scholarly journals Cancellation ideals of a ring extension

2021 ◽  
Vol 32 (1) ◽  
pp. 138-146
Author(s):  
S. Tchamna ◽  

We study properties of cancellation ideals of ring extensions. Let R⊆S be a ring extension. A nonzero S-regular ideal I of R is called a (quasi)-cancellation ideal of the ring extension R⊆S if whenever IB=IC for two S-regular (finitely generated) R-submodules B and C of S, then B=C. We show that a finitely generated ideal I is a cancellation ideal of the ring extension R⊆S if and only if I is S-invertible.

2017 ◽  
Vol 16 (04) ◽  
pp. 1750069 ◽  
Author(s):  
Simplice Tchamna

We study properties of multiplicative canonical (m-canonical) ideals of ring extensions. Let [Formula: see text] be a ring extension. A nonzero [Formula: see text]-regular ideal [Formula: see text] of [Formula: see text] is called an m-canonical ideal of the extension [Formula: see text] if [Formula: see text] for all [Formula: see text]-regular ideal [Formula: see text] of [Formula: see text]. We study m-canonical ideals for pullback diagrams, and we use the notion of m-canonical ideal to characterize Prüfer extensions.


1994 ◽  
Vol 49 (3) ◽  
pp. 365-371 ◽  
Author(s):  
Le Van Thuyet

A ring R is called right FSG if every finitely generated right R-subgenerator is a generator. In this note we consider the question of when a ring extension of a given right FSG ring is right FSG and the converse. As a consequence we obtain some results about right FSG group rings.


2017 ◽  
Vol 16 (10) ◽  
pp. 1750187 ◽  
Author(s):  
Karima Alaoui Ismaili ◽  
David E. Dobbs ◽  
Najib Mahdou

Recently, Xiang and Ouyang defined a (commutative unital) ring [Formula: see text] to be Nil[Formula: see text]-coherent if each finitely generated ideal of [Formula: see text] that is contained in Nil[Formula: see text] is a finitely presented [Formula: see text]-module. We define and study Nil[Formula: see text]-coherent modules and special Nil[Formula: see text]-coherent modules over any ring. These properties are characterized and their basic properties are established. Any coherent ring is a special Nil[Formula: see text]-coherent ring and any special Nil[Formula: see text]-coherent ring is a Nil[Formula: see text]-coherent ring, but neither of these statements has a valid converse. Any reduced ring is a special Nil[Formula: see text]-coherent ring (regardless of whether it is coherent). Several examples of Nil[Formula: see text]-coherent rings that are not special Nil[Formula: see text]-coherent rings are obtained as byproducts of our study of the transfer of the Nil[Formula: see text]-coherent and the special Nil[Formula: see text]-coherent properties to trivial ring extensions and amalgamated algebras.


Author(s):  
Rachida El Khalfaoui ◽  
Najib Mahdou ◽  
Siamak Yassemi

Local dimension is an ordinal valued invariant that is in some sense a measure of how far a ring is from being local and denoted [Formula: see text]. The purpose of this paper is to study the local dimension of ring extensions such as homomorphic image, trivial ring extension and the amalgamation of rings.


1989 ◽  
Vol 105 (3) ◽  
pp. 447-458 ◽  
Author(s):  
P. Menal ◽  
P. Vámos

In this paper we investigate the following problem: is a ring R right self FP-injective if it has the property that it is pure, as a right R-module, in every ring extension? The answer is ‘almost always’; for example it is ‘yes’ when R is an algebra over a field or its additive group has no torsion. A counter-example is provided to show that the answer is ‘no’ in general. Rings which are pure in all ring extensions were studied by Sabbagh in [4] where it is pointed out that existentially closed rings have this property. Therefore every ring embeds in such a ring. We will show that the weaker notion of being weakly linearly existentially closed is equivalent to self FP-injectivity. As a consequence we obtain that any ring embeds in a self FP-injective ring.


1981 ◽  
Vol 4 (4) ◽  
pp. 703-709
Author(s):  
George Szeto

Nagahara and Kishimoto [1] studied free ring extensionsB(x)of degreenfor some integernover a ringBwith 1, wherexn=b,cx=xρ(c)for allcand somebinB(ρ=automophism of  B), and{1,x…,xn−1}is a basis. Parimala and Sridharan [2], and the author investigated a class of free ring extensions called generalized quaternion algebras in whichb=−1andρis of order 2. The purpose of the present paper is to generalize a characterization of a generalized quaternion algebra to a free ring extension of degreenin terms of the Azumaya algebra. Also, it is shown that a one-to-one correspondence between the set of invariant ideals ofBunderρand the set of ideals ofB(x)leads to a relation of the Galois extensionBover an invariant subring underρto the center ofB.


2015 ◽  
Vol 22 (03) ◽  
pp. 413-420
Author(s):  
Huanyin Chen

An ideal I of a ring R is strongly separative provided that for all finitely generated projective R-modules A, B with A=AI and B=BI, if 2A ≅ A ⊕ B, then A ≅ B. We prove in this paper that a regular ideal I of a ring R is strongly separative if and only if each a ∈ 1+I satisfying (1-a)R ∝ r(a) is unit-regular, if and only if each a ∈ 1+I satisfying (1-a2)R ∝ r(a2) is unit-regular, if and only if each a ∈ 1+I satisfying R(1-a)R=R r(a) is unit-regular, if and only if each a ∈ 1+I satisfying R(1-a2)R=R r(a2) is unit-regular.


1966 ◽  
Vol 27 (2) ◽  
pp. 721-731 ◽  
Author(s):  
O. E. Villamayor ◽  
D. Zelinsky

In [5], Chase, Harrison and Rosenberg proved the Fundamental Theorem of Galois Theory for commutative ring extensions S ⊃ R under two hypotheses: (i) 5 (and hence R) has no idempotents except 0 and l; and (ii) 5 is Galois over R with respect to a finite group G—which in the presence of (i) is equivalent to (ii′): S is separable as an R-algebra, finitely generated and projective as an R-module, and the fixed ring under the group of all R-algebra automorphisms of S is exactly R.


Author(s):  
Zhang Aixian ◽  
Feng Keqin

In this paper we study the normal bases for Galois ring extension ${{R}} / {Z}_{p^r}$ where ${R}$ = ${GR}$(pr, n). We present a criterion on normal basis for ${{R}} / {Z}_{p^r}$ and reduce this problem to one of finite field extension $\overline{R} / \overline{Z}_{p^r}=F_{q} / F_{p}  (q=p^n)$ by Theorem 1. We determine all optimal normal bases for Galois ring extension.


1987 ◽  
Vol 102 (3) ◽  
pp. 389-397 ◽  
Author(s):  
Daniel Katz ◽  
Louis J. Ratliff

AbstractThe first note gives two new characterization of the ideal-transform T(I) of a finitely generated regular ideal I in a large class of rings. Specifically, if b is a regular element in I, then there exists a regular element c ∈ I and a multiplicatively closed set S of regular elements in R such that T(I) = T((b, c)R) = Rb ∩ Rc = Rb ∩ Rs, so T(I) is the ideal-transform of an ideal generated by two elements, and every ring of the form Rb ∩ Rs is an ideal-transform. The second theorem shows that if T(I) is integrally closed, then it is a Krull ring. As an application of these results we strengthen some known results concerning when certain ideal-transforms of the Rees ring R(R, I) are finite or integral extension rings of R(R, I).


Sign in / Sign up

Export Citation Format

Share Document