When every holomorphic vector bundle on a non-reduced one-dimensional complex space is a direct sum of line bundles?

2006 ◽  
pp. 185-190 ◽  
Author(s):  
E. Ballico
2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Svetlana Ermakova

AbstractIn this article we establish an analogue of the Barth-Van de Ven-Tyurin-Sato theorem.We prove that a finite rank vector bundle on a complete intersection of finite codimension in a linear ind-Grassmannian is isomorphic to a direct sum of line bundles.


1999 ◽  
Vol 1999 (508) ◽  
pp. 85-98
Author(s):  
Maxim Braverman

Abstract We obtain estimates on the character of the cohomology of an S1-equivariant holomorphic vector bundle over a Kähler manifold M in terms of the cohomology of the Lerman symplectic cuts and the symplectic reduction of M. In particular, we prove and extend inequalities conjectured by Wu and Zhang. The proof is based on constructing a flat family of complex spaces Mt (t ∈ ℂ) such that Mt is isomorphic to M for t ≠ 0, while M0 is a singular reducible complex space, whose irreducible components are the Lerman symplectic cuts.


2005 ◽  
Vol 12 (1) ◽  
pp. 11-13
Author(s):  
E. Ballico

Abstract Here, using the ideas of an old paper by S. Dineen (An. Acad. Brasil. Ci. 48: 11–12, 1976), we give large classes of pairs (𝑋, 𝐸) such that 𝑋 is an infinite-dimensional complex space very far from a Banach manifold, 𝐸 is a holomorphic vector bundle on 𝑋 and 𝐻1(𝑋,𝐸) is infinite-dimensional.


2004 ◽  
Vol 11 (1) ◽  
pp. 43-48
Author(s):  
E. Ballico

Abstract Let V be a complex localizing Banach space with countable unconditional basis and E a rank r holomorphic vector bundle on P(V). Here we study the holomorphic embeddings of P(E) into products of projective spaces and the holomorphic line bundles on P(E). In particular we prove that if r ≥ 3, then H 1(P(E), L) = 0 for every holomorphic line bundle L on P(E).


Author(s):  
E. Ballico

Let V be an infinite-dimensional locally convex complex space, X a closed subset of P(V) defined by finitely many continuous homogeneous equations and E a holomorphic vector bundle on X with finite rank. Here we show that E is holomorphically trivial if it is topologically trivial and spanned by its global sections and in a few other cases.


2015 ◽  
Vol 26 (05) ◽  
pp. 1550029
Author(s):  
Yasha Savelyev

We study a smooth analogue of jumping curves of a holomorphic vector bundle, and use Yang–Mills theory over S2 to show that any non-trivial, smooth Hermitian vector bundle E over a smooth simply connected manifold, must have such curves. This is used to give new examples complex manifolds for which a non-trivial holomorphic vector bundle must have jumping curves in the classical sense (when c1(E) is zero). We also use this to give a new proof of a theorem of Gromov on the norm of curvature of unitary connections, and make the theorem slightly sharper. Lastly we define a sequence of new non-trivial integer invariants of smooth manifolds, connected to this theory of smooth jumping curves, and make some computations of these invariants. Our methods include an application of the recently developed Morse–Bott chain complex for the Yang–Mills functional over S2.


2002 ◽  
Vol 90 (2) ◽  
pp. 180
Author(s):  
Christina W. Tønnesen-Friedman

It is shown that if a minimal ruled surface $\mathrm{P}(E) \rightarrow \Sigma$ admits a Kähler Yamabe minimizer, then this metric is generalized Kähler-Einstein and the holomorphic vector bundle $E$ is quasi-stable.


2017 ◽  
Vol 153 (7) ◽  
pp. 1349-1371 ◽  
Author(s):  
Eduard Looijenga

Let $X$ be an irreducible complex-analytic variety, ${\mathcal{S}}$ a stratification of $X$ and ${\mathcal{F}}$ a holomorphic vector bundle on the open stratum ${X\unicode[STIX]{x0030A}}$. We give geometric conditions on ${\mathcal{S}}$ and ${\mathcal{F}}$ that produce a natural lift of the Chern class $\operatorname{c}_{k}({\mathcal{F}})\in H^{2k}({X\unicode[STIX]{x0030A}};\mathbb{C})$ to $H^{2k}(X;\mathbb{C})$, which, in the algebraic setting, is of Hodge level ${\geqslant}k$. When applied to the Baily–Borel compactification $X$ of a locally symmetric variety ${X\unicode[STIX]{x0030A}}$ and an automorphic vector bundle ${\mathcal{F}}$ on ${X\unicode[STIX]{x0030A}}$, this refines a theorem of Goresky–Pardon. In passing we define a class of simplicial resolutions of the Baily–Borel compactification that can be used to define its mixed Hodge structure. We use this to show that the stable cohomology of the Satake ($=$ Baily–Borel) compactification of ${\mathcal{A}}_{g}$ contains nontrivial Tate extensions.


2006 ◽  
Vol 13 (1) ◽  
pp. 7-10
Author(s):  
Edoardo Ballico

Abstract Let 𝑋 be a holomorphically convex complex manifold and Exc(𝑋) ⊆ 𝑋 the union of all positive dimensional compact analytic subsets of 𝑋. We assume that Exc(𝑋) ≠ 𝑋 and 𝑋 is not a Stein manifold. Here we prove the existence of a holomorphic vector bundle 𝐸 on 𝑋 such that is not holomorphically trivial for every open neighborhood 𝑈 of Exc(𝑋) and every integer 𝑚 ≥ 0. Furthermore, we study the existence of holomorphic vector bundles on such a neighborhood 𝑈, which are not extendable across a 2-concave point of ∂(𝑈).


Sign in / Sign up

Export Citation Format

Share Document