Kähler Yamabe minimizers on minimal ruled surfaces
It is shown that if a minimal ruled surface $\mathrm{P}(E) \rightarrow \Sigma$ admits a Kähler Yamabe minimizer, then this metric is generalized Kähler-Einstein and the holomorphic vector bundle $E$ is quasi-stable.
2014 ◽
Vol 229
(5)
◽
pp. 957-964
◽
Keyword(s):
2008 ◽
Vol 2008
◽
pp. 1-19
◽
Keyword(s):
2017 ◽
Vol 153
(7)
◽
pp. 1349-1371
◽
Keyword(s):
1933 ◽
Vol 29
(3)
◽
pp. 382-388