scholarly journals Kähler Yamabe minimizers on minimal ruled surfaces

2002 ◽  
Vol 90 (2) ◽  
pp. 180
Author(s):  
Christina W. Tønnesen-Friedman

It is shown that if a minimal ruled surface $\mathrm{P}(E) \rightarrow \Sigma$ admits a Kähler Yamabe minimizer, then this metric is generalized Kähler-Einstein and the holomorphic vector bundle $E$ is quasi-stable.

Author(s):  
Lei Cui ◽  
Jian S Dai ◽  
Chung-Ching Lee

This paper applies Euclidean invariants from differential geometry to kinematic properties of the ruled surfaces generated by the coupler link and the constraint-screw axes. Starting from investigating the assembly configuration, the work reveals two cycle phases of the coupler link when the input link finishes a full rotation. This leads to analysis of the motion ruled surface generated by the directrix along the coupler link, where Euclidean invariants are obtained and singularities are identified. This work further presents the constraint ruled surface that is generated by the constraint screw axes and unveils its intrinsic characteristics.


2008 ◽  
Vol 2008 ◽  
pp. 1-19 ◽  
Author(s):  
Cumali Ekici ◽  
Yasin Ünlütürk ◽  
Mustafa Dede ◽  
B. S. Ryuh

The trajectory of a robot end-effector is described by a ruled surface and a spin angle about the ruling of the ruled surface. In this way, the differential properties of motion of the end-effector are obtained from the well-known curvature theory of a ruled surface. The curvature theory of a ruled surface generated by a line fixed in the end-effector referred to as the tool line is used for more accurate motion of a robot end-effector. In the present paper, we first defined tool trihedron in which tool line is contained for timelike ruled surface with timelike ruling, and transition relations among surface trihedron: tool trihedron, generator trihedron, natural trihedron, and Darboux vectors for each trihedron, were found. Then differential properties of robot end-effector's motion were obtained by using the curvature theory of timelike ruled surfaces with timelike ruling.


2015 ◽  
Vol 26 (05) ◽  
pp. 1550029
Author(s):  
Yasha Savelyev

We study a smooth analogue of jumping curves of a holomorphic vector bundle, and use Yang–Mills theory over S2 to show that any non-trivial, smooth Hermitian vector bundle E over a smooth simply connected manifold, must have such curves. This is used to give new examples complex manifolds for which a non-trivial holomorphic vector bundle must have jumping curves in the classical sense (when c1(E) is zero). We also use this to give a new proof of a theorem of Gromov on the norm of curvature of unitary connections, and make the theorem slightly sharper. Lastly we define a sequence of new non-trivial integer invariants of smooth manifolds, connected to this theory of smooth jumping curves, and make some computations of these invariants. Our methods include an application of the recently developed Morse–Bott chain complex for the Yang–Mills functional over S2.


2017 ◽  
Vol 153 (7) ◽  
pp. 1349-1371 ◽  
Author(s):  
Eduard Looijenga

Let $X$ be an irreducible complex-analytic variety, ${\mathcal{S}}$ a stratification of $X$ and ${\mathcal{F}}$ a holomorphic vector bundle on the open stratum ${X\unicode[STIX]{x0030A}}$. We give geometric conditions on ${\mathcal{S}}$ and ${\mathcal{F}}$ that produce a natural lift of the Chern class $\operatorname{c}_{k}({\mathcal{F}})\in H^{2k}({X\unicode[STIX]{x0030A}};\mathbb{C})$ to $H^{2k}(X;\mathbb{C})$, which, in the algebraic setting, is of Hodge level ${\geqslant}k$. When applied to the Baily–Borel compactification $X$ of a locally symmetric variety ${X\unicode[STIX]{x0030A}}$ and an automorphic vector bundle ${\mathcal{F}}$ on ${X\unicode[STIX]{x0030A}}$, this refines a theorem of Goresky–Pardon. In passing we define a class of simplicial resolutions of the Baily–Borel compactification that can be used to define its mixed Hodge structure. We use this to show that the stable cohomology of the Satake ($=$ Baily–Borel) compactification of ${\mathcal{A}}_{g}$ contains nontrivial Tate extensions.


Author(s):  
João Pedro Xavier ◽  
Eliana Manuel Pinho

Among the famous dynamic string models conceived by Théodore Olivier (1793-1853) as a primary didactic tool to teach Descriptive Geometry, there are some that were strictly related to classic problems of stereotomy. This is the case of the biais passé, which was both a clear illustration of a special warped ruled surface and an example of how constructors dealt with the problem of building a skew arch, solving structural and practical stone cutting demands. The representation of the biais passé in Olivier's model achieved a perfect correspondence to its épure with Monge's Descriptive Geometry. This follow from the long development of representational tools, since the 13th century sketch of an oblique passage, as well as the improvement of constructive procedures for skew arches. Paradoxically, when Olivier presented his string model, the importance of the biais passé was already declining. Meanwhile other ruled surfaces were appropriated by architecture, some of which acquiring, beyond their inherent structural efficiency, a relevant aesthetic value.


2006 ◽  
Vol 13 (1) ◽  
pp. 7-10
Author(s):  
Edoardo Ballico

Abstract Let 𝑋 be a holomorphically convex complex manifold and Exc(𝑋) ⊆ 𝑋 the union of all positive dimensional compact analytic subsets of 𝑋. We assume that Exc(𝑋) ≠ 𝑋 and 𝑋 is not a Stein manifold. Here we prove the existence of a holomorphic vector bundle 𝐸 on 𝑋 such that is not holomorphically trivial for every open neighborhood 𝑈 of Exc(𝑋) and every integer 𝑚 ≥ 0. Furthermore, we study the existence of holomorphic vector bundles on such a neighborhood 𝑈, which are not extendable across a 2-concave point of ∂(𝑈).


1972 ◽  
Vol 48 ◽  
pp. 183-188
Author(s):  
Hisasi Morikawa

A holomorphic vector bundle E over a complex analytic manifold is said to be simple, if its global endomorphism ring Endc (E) is isomorphic to C. Projectifying the fibers of E, we get the associated projective bundle P(E) of E, If we can choose a system of constant transition functions of P(Exs), the projective bundle P(E) is said to be locally flat.


1933 ◽  
Vol 29 (3) ◽  
pp. 382-388
Author(s):  
W. G. Welchman

The bisecant curves of a ruled surface, that is to say the curves on the surface which meet each generator in two points, are fundamental in the consideration of the normal space of the ruled surface. It is well known that if is a bisecant curve of order ν and genus π on a ruled surface of order N and genus P, thenprovided that the curve has no double points which count twice as intersections of a generator of the ruled surface.


2004 ◽  
Vol 01 (06) ◽  
pp. 739-749 ◽  
Author(s):  
OSAMA ABDELKADER ◽  
SHABAN KHIDR

The purpose of this paper is to construct a solution with Lp-estimates, 1≤p≤∞, to the equation [Formula: see text] on strongly q-convex domain of Kähler manifold. This is done for forms of type (n,s), s≥ max (q,k), with values in a holomorphic vector bundle which is Nakano semi-positive of type k and for forms of type (0,s), q≤s≤n-k, with values in a holomorphic vector bundle which is Nakano semi-negative of type k.


1978 ◽  
Vol 19 (2) ◽  
pp. 125-128
Author(s):  
R. F. Lax

The classical theory of Weierstrass points on a compact Riemann surface is well-known (see, for example, [3]). Ogawa [6] has defined generalized Weierstrass points. Let Y denote a compact complex manifold of (complex) dimension n. Let E denote a holomorphic vector bundle on Y of rank q. Let Jk(E) (k = 0, 1, …) denote the holomorphic vector bundle of k-jets of E [2, p. 112]. Put rk(E) = rank Jk(E) = q.(n + k)!/n!k!. Suppose that Γ(E), the vector space of global holomorphic sections of E, is of dimension γ(E)>0. Consider the trivial bundle Y × Γ(E) and the mapwhich at a point Q∈Y takes a section of E to its k-jet at Q. Put μ = min(γ(E),rk(E)).


Sign in / Sign up

Export Citation Format

Share Document