Necessary and sufficient conditions for arbitrary linear combinations of solutions of a class of nonlinear partial differential equations to satisfy the differential equation

2021 ◽  
Vol 9 (1) ◽  
pp. 15-23
Author(s):  
Namik Yener
1990 ◽  
Vol 1 (3) ◽  
pp. 189-216 ◽  
Author(s):  
G. W. Bluman ◽  
S. Kumei

Simple and systematic algorithms for relating differential equations are given. They are based on comparing the local symmetries admitted by the equations. Comparisons of the infinitesimal generators and their Lie algebras of given and target equations lead to necessary conditions for the existence of mappings which relate them. Necessary and sufficient conditions are presented for the existence of invertible mappings from a given nonlinear system of partial differential equations to some linear system of equations with examples including the hodograph and Legendre transformations, and the linearizations of a nonlinear telegraph equation, a nonlinear diffusion equation, and nonlinear fluid flow equations. Necessary and sufficient conditions are also given for the existence of an invertible point transformation which maps a linear partial differential equation with variable coefficients to a linear equation with constant coefficients. Other types of mappings are also considered including the Miura transformation and the invertible mapping which relates the cylindrical KdV and the KdV equations.


1971 ◽  
Vol 93 (2) ◽  
pp. 162-164
Author(s):  
V. A. Bapat ◽  
P. Srinivasan

A method for the solution of a certain class of nonlinear partial differential equations by the method of separation of variables is presented. The method enables the nonlinear partial differential equation to be reduced to ordinary nonlinear differential equations, which can be solved by exact methods (or by approximate methods if an exact solution is not possible).


2018 ◽  
Vol 98 (1) ◽  
pp. 122-133
Author(s):  
FENGBAI LI

We study systems of partial differential equations of Briot–Bouquet type. The existence of holomorphic solutions to such systems largely depends on the eigenvalues of an associated matrix. For the noninteger case, we generalise the well-known result of Gérard and Tahara [‘Holomorphic and singular solutions of nonlinear singular first order partial differential equations’, Publ. Res. Inst. Math. Sci.26 (1990), 979–1000] for Briot–Bouquet type equations to Briot–Bouquet type systems. For the integer case, we introduce a sequence of blow-up like changes of variables and give necessary and sufficient conditions for the existence of holomorphic solutions. We also give some examples to illustrate our results.


2018 ◽  
Vol 1 (25) ◽  
pp. 509-522
Author(s):  
. Ali Khalaf Hussain

          In this paper we study the false transient method  to  solve and transform a system of non-linear partial differential equations which can be solved using finite-difference method and give some problems which have a good results compared with the exact solution, whereas this method was used to transform the nonlinear partial differential equation to a linear partial differential equation which can be solved by using the alternating-direction implicit method after using the ADI method. The system of linear algebraic equations could be obtained and can be solved by using MATLAB.


2021 ◽  
Vol 19 ◽  
pp. 683-698
Author(s):  
W. M. Mahmoud ◽  
Alaa Hassan Noreldeen

In this paper, we study inextensible flows of spacelike curves lying fully on a spacelike surface Ω according to equiform frame in 4-dimensional Minkowski space ℝ1 4 . We give necessary and sufficient conditions for this inextensible flows which are expressed as a partial differential equation involving the equiform curvature functions in 4-dimensional Minkowski space ℝ1 4 . Finally we give an application of inextensible flows of spacelike curves in ℝ1 4 .


Sign in / Sign up

Export Citation Format

Share Document