Assessment of load carrying capacity and fatigue life expectancy of a monumental Masonry Arch Bridge by field load testing: a case study of veresk

2016 ◽  
Vol 59 (4) ◽  
pp. 703-718 ◽  
Author(s):  
Shervan Ataei ◽  
Mosab Tajalli ◽  
Amin Miri
2017 ◽  
Vol 24 (4) ◽  
pp. 1834-1842 ◽  
Author(s):  
Sh. Ataei ◽  
A. Miri ◽  
M. Tajalli

2019 ◽  
Vol 22 (13) ◽  
pp. 2755-2770
Author(s):  
Fuyun Huang ◽  
Yulong Cui ◽  
Rui Dong ◽  
Jiangang Wei ◽  
Baochun Chen

When casting wet concrete into hollow steel tubular arch during the construction process of a concrete-filled steel tubular arch bridge, an initial stress (due to dead load, etc.) would be produced in the steel tube. In order to understand the influence of this initial stress on the strength of the concrete-filled steel tubular arch bridge, a total of four single tubular arch rib (bare steel first) specimens (concrete-filled steel tubular last) with various initial stress levels were constructed and tested to failure. The test results indicate that the initial stress has a large influence on the ultimate load-carrying capacity and ductility of the arch structure. The high preloading ratio will reduce significantly the strength and ductility that the maximum reductions are over 25%. Then, a finite element method was presented and validated using the test results. Based on this finite element model, a parametric study was performed that considered the influence of various parameters on the ultimate load-carrying capacity of concrete-filled steel tubular arches. These parameters included arch slenderness, rise-to-span ratio, loading method, and initial stress level. The analysis results indicate that the initial stress can reduce the ultimate loading capacity significantly, and this reduction has a strong relationship with arch slenderness and rise-to-span ratio. Finally, a method for calculating the preloading reduction factor of ultimate load-carrying capacity of single concrete-filled steel tubular arch rib structures was proposed based on the equivalent beam–column method.


Arch bridges ◽  
1995 ◽  
pp. 449-458 ◽  
Author(s):  
Paolo Faccio ◽  
Paolo Foraboschi ◽  
Enzo Siviero

2011 ◽  
Vol 71-78 ◽  
pp. 1732-1735
Author(s):  
Qing Ping Jin ◽  
Xian Bao Wang ◽  
Xue Jun Li

The arch bridges were used widely for the good performance under the pressure in China. It was very sensitive to some factors as temperature , settlement etc so that the arch bridges occurred the disease, carrying capacity reduction or even structure destruction etc.In the paper, based on the characteristics of masonry arch bridges, reinforcement method was analyzed, according to the situation of a masonry arch bridge, release energy method was applied to strengthening project. By comparing the stress and the strain before and after the strengthening project, some conclusions could be drawn that the bridge structure carrying capacity had been raised, the energy accumulated in the bridge structure was released, the structure safety margin was improved.


Sign in / Sign up

Export Citation Format

Share Document