Condition assessment of reinforced concrete bridges using structural health monitoring techniques - A case study

2009 ◽  
Vol 5 (4) ◽  
pp. 381-395 ◽  
Author(s):  
E. Mehrani ◽  
A. Ayoub ◽  
A. Ayoub
2018 ◽  
Vol 199 ◽  
pp. 06011
Author(s):  
Elsabe Kearsley ◽  
SW Jacobsz

Reinforced concrete is the most widely used construction material and thus effective condition assessment of reinforced concrete elements forms a significant part of structural health monitoring. An effective structural health monitoring system should be able to give the owner prior warning that structural elements are reaching conditions approaching either serviceability or ultimate limit states. The aim of this investigation is to compare strain data recorded during load testing of a reinforced concrete beam using Fibre optic Bragg Gratings (FBG) and a photographic technique to determine circumstances most suitable for the use of each of the techniques. The test results indicate that FBG sensors can be used to detect small strains as well as large strains in uncracked concrete elements, while optical images can be used to accurately map crack development over the surface area of the structure.


Author(s):  
Babar Nasim Khan Raja ◽  
Saeed Miramini ◽  
Colin Duffield ◽  
Shilun Chen ◽  
Lihai Zhang

The mechanical properties of bridge bearings gradually deteriorate over time resulting from daily traffic loading and harsh environmental conditions. However, structural health monitoring of in-service bridge bearings is rather challenging. This study presents a bridge bearing condition assessment framework which integrates the vibration data from a non-contact interferometric radar (i.e. IBIS-S) and a simplified analytical model. Using two existing concrete bridges in Australia as a case study, it demonstrates that the developed framework has the capability of detecting the structural condition of the bridge bearings in real-time. In addition, the results from a series of parametric studies show that the effectiveness of the developed framework is largely determined by the stiffness ratio between bridge bearing and girder ([Formula: see text], i.e. the structural condition of the bearings can only be effectively captured when the value of [Formula: see text] ranges from 1/100 and 100.


Sign in / Sign up

Export Citation Format

Share Document