A Correction Method of CT Values Influenced by Partial Volume Effect(Imaging & Measurement)

Author(s):  
Michihiko KOSEKI ◽  
Yusuke KITAGAWA ◽  
Norio INOU ◽  
Koutarou MAKI
2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
F. Gallivanone ◽  
C. Canevari ◽  
L. Gianolli ◽  
C. Salvatore ◽  
P. A. Della Rosa ◽  
...  

We have developed, optimized, and validated a method for partial volume effect (PVE) correction of oncological lesions in positron emission tomography (PET) clinical studies, based on recovery coefficients (RC) and on PET measurements of lesion-to-background ratio (L/Bm) and of lesion metabolic volume. An operator-independent technique, based on an optimised threshold of the maximum lesion uptake, allows to define an isocontour around the lesion on PET images in order to measure both lesion radioactivity uptake and lesion metabolic volume. RC are experimentally derived from PET measurements of hot spheres in hot background, miming oncological lesions. RC were obtained as a function of PET measured sphere-to-background ratio and PET measured sphere metabolic volume, both resulting from the threshold-isocontour technique. PVE correction of lesions of a diameter ranging from 10 mm to 40 mm and for measuredL/Bmfrom 2 to 30 was performed using measured RC curves tailored at answering the need to quantify a large variety of real oncological lesions by means of PET. Validation of the PVE correction method resulted to be accurate (>89%) in clinical realistic conditions for lesion diameter > 1 cm, recovering >76% of radioactivity for lesion diameter < 1 cm. Results from patient studies showed that the proposed PVE correction method is suitable and feasible and has an impact on a clinical environment.


2019 ◽  
Vol 57 ◽  
pp. 153-159 ◽  
Author(s):  
Domenico Finocchiaro ◽  
Salvatore Berenato ◽  
Elisa Grassi ◽  
Valentina Bertolini ◽  
Gastone Castellani ◽  
...  

2008 ◽  
Vol 21 (10) ◽  
pp. 1030-1042 ◽  
Author(s):  
Yuzhuo Su ◽  
Sunitha B. Thakur ◽  
Karimi Sasan ◽  
Shuyan Du ◽  
Paul Sajda ◽  
...  

1999 ◽  
Author(s):  
Hilmi Rifai ◽  
Isabelle Bloch ◽  
Seth A. Hutchinson ◽  
Joe Wiart ◽  
Line Garnero

2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Ihar Volkau ◽  
Fiftarina Puspitasari ◽  
Wieslaw L. Nowinski

We present a mathematical frame to carry out segmentation of cerebrospinal fluid (CSF) of ventricular region in computed tomography (CT) images in the presence of partial volume effect (PVE). First, the image histogram is fitted using the Gaussian mixture model (GMM). Analyzing the GMM, we find global threshold based on parameters of distributions for CSF, and for the combined white and grey matter (WGM). The parameters of distribution of PVE pixels on the boundary of ventricles are estimated by using a convolution operator. These parameters are used to calculate local thresholds for boundary pixels by the analysis of contribution of the neighbor pixels intensities into a PVE pixel. The method works even in the case of an almost unimodal histogram; it can be useful to analyze the parameters of PVE in the ground truth provided by the expert.


Sign in / Sign up

Export Citation Format

Share Document