110 Three-Dimensional Flow Simulation Around a Deformed Red Blood Cell Moving on a Flat Plate

Author(s):  
Yuki OKUYAMA ◽  
Toshiyuki HAYASE ◽  
Kenichi FUNAMOTO
2020 ◽  
Vol 71 ◽  
pp. 101684 ◽  
Author(s):  
Hamid Saadatnejadgharahassanlou ◽  
Rasoul Ilkhanipour Zeynali ◽  
Amin Gharehbaghi ◽  
Saeid Mehdizadeh ◽  
Babak Vaheddoost

Author(s):  
Jochen Gier ◽  
Sabine Ardey ◽  
Adam Heisler

The complex three-dimensional flow field in a highly loaded three-stage LPT is analysed on the basis of a steady three-dimensional flow simulation. The quality of the simulation concerning this configuration is demonstrated by means of a comparison with extensive experimental data gathered in a turbine test rig. For an accurate representation of the transitional character of the turbine flow a modified version of the Abu-Ghannam Shaw transition model is employed in the TRACE_S Navier-Stokes code in connection with a two-equation turbulence model. The flow field of this highly loaded turbine is characterised by complex secondary flow pattern as well as local separation and reattachment zones. The need and applicability of transition modelling is demonstrated by a comparison with a fully turbulent calculation and experimental flow visualisation. The basic flow structure is described in terms of several characteristic quantities and discussed in detail. For further analysis variations of the point of operation and the geometry also based on experiments are included in this investigation.


2009 ◽  
Vol 114 (3) ◽  
pp. 1803-1812 ◽  
Author(s):  
Seung Hwan Lee ◽  
Mei Yang ◽  
Young Seok Song ◽  
Seong Yun Kim ◽  
Jae Ryoun Youn

1985 ◽  
Vol 107 (1) ◽  
pp. 31-35 ◽  
Author(s):  
N. Sitaram ◽  
A. L. Treaster

A simplified method of using four-hole probes to measure three-dimensional flow-fields is presented. This method is similar to an existing calibration and application procedure used for five-hole probes. The new method is demonstrated for two four-hole probes of different geometry. These four-hole probes and a five-hole probe are used to measure the turbulent boundary layer on a flat plate. The results from the three probes are in good agreement with theoretical predictions. The major discrepancies occur near the surface of the flat plate and are attributed to wall vicinity and velocity gradient effects.


Sign in / Sign up

Export Citation Format

Share Document