scholarly journals Delay-Dependent Exponential Stability of a Class of Neutral Systems with Time Delay and Time-Varying Parameter Uncertainties: An LMI Approach.

2003 ◽  
Vol 46 (1) ◽  
pp. 245-251 ◽  
Author(s):  
Dong YUE ◽  
Jian'an FANG ◽  
Sangchul WON
2011 ◽  
Vol 217-218 ◽  
pp. 668-673
Author(s):  
Xiu Liu ◽  
Shou Ming Zhong ◽  
Xiu Yong Ding

The global exponential stability for switched neutral systems with time-varying delays and nonlinear perturbations is investigated in this paper. LMI-based delay-dependent criterion is proposed to guarantee exponential stability for our considered systems under any switched signal. Lyapunov-Krasovskii functional and Leibniz-Newton formula are applied to find the stability results. Free weighting matrix and linear matrix inequality (LMI) approaches are used to solve the proposed conditions.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Manlika Rajchakit ◽  
Grienggrai Rajchakit

This paper is concerned with mean square exponential stability of switched stochastic system with interval time-varying delays. The time delay is any continuous function belonging to a given interval, but not necessary to be differentiable. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, a switching rule for the mean square exponential stability of switched stochastic system with interval time-varying delays and new delay-dependent sufficient conditions for the mean square exponential stability of the switched stochastic system are first established in terms of LMIs. Numerical example is given to show the effectiveness of the obtained result.


2013 ◽  
Vol 284-287 ◽  
pp. 2305-2309
Author(s):  
Jenq Der Chen ◽  
Ruey Shin Chen ◽  
Chin Tan Lee ◽  
Chien Lu

In this paper, the robust exponential stability problem is investigated for a class of neutral systems with interval time-varying delay and nonlinear perturbations. Based on the Lyapunov-Krasovskii functionals in conjunction with Leibniz-Newton formula, novel LMI-based delay-dependent and delay-independent criteria are proposed to guarantee the robust exponential stability with a convergence rate for our considered systems. Finally, numerical examples are illustrated to show the improved results from using the proposed method.


Sign in / Sign up

Export Citation Format

Share Document