Numerical Analysis of Incompressible Viscous Fluid Flow Using Lattice Boltzmann Method

2002 ◽  
Vol 2002.15 (0) ◽  
pp. 539-540
Author(s):  
Masataka TAKANO ◽  
Nobuyoshi TOSAKA
Author(s):  
Akshay C. Gunde ◽  
Sushanta K. Mitra ◽  
Tayfun Babadagli

Study of flow through porous media has been an area of major interest due to its application in diverse areas like Enhanced Oil Recovery. In order to gain a better understanding of the physical processes taking place inside a porous structure, a large number of attempts have been made to computationally simulate multiphase fluid flow at pore-scale. Recently, application of Lattice Boltzmann Method has gained popularity for this very purpose, considering its relative superiority in dealing with complex boundaries and multiphase flow. However, in order that such a numerical analysis is successful, a proper understanding of the geometry of the pore structure at the microscale is required. This paper uses a Micro-CT scan image of a Berea Sandstone core, which displays a two dimensional representation of pore network inside the scanned sample. The processed image has been imported and simulation of an immiscible two-phase flow has been carried out by using a Lattice Boltzmann program. The resident fluid (oil) has been displaced by the invading fluid (water) due to application of a pressure gradient. The pore surfaces have been treated as solid boundaries and bounce back scheme has been implemented on them to account for the no-slip condition. The ability of the code to import an arbitrary porous geometry and perform numerical analysis of fluid flow has been demonstrated.


Author(s):  
S. O. Dovgiy ◽  
A. O. Ostapenko ◽  
G. G. Bulanchuk

This work is dedicated to the modeling methodology of a viscous fluid flows with the lattice Boltzmann method on graphic processors based on the technology of images rendering in web browsers WebGL. A two-dimensional nine-velocity LBM model (D2Q9) with a collision integral in a Bhatnagar-Gross-Kruk approximation form is shown. The possibilities of calculation acceleration using WebGL technology is described, namely features of using textures to contain values of some physical quantities in numerical algorithms and using fremebuffers to storage the textures, influence of the texture parameters on the numerical algorithms, features of shaders programming. The questions of shader programs using for carrying out stages of physical modeling were considered. The proposed methodology was used to develop an original web program for modeling of classical test problems. Simulations of the Poiseuille flow in a plane channel and the flow around a circular cylinder in a plane channel were performed. The obtained results were compared with the results of calculations performed in the original verified modeling program based on the lattice Boltzmann method and in the Comsol Multiphysics package with the finite element method. Comparisons of the values of the velocity magnitude showed the consistency of the obtained results with the data of other numerical experiments. The analysis of computational speed in comparison with modeling using the optimized algorithm of a method with use of the technology of parallel calculations on CPU OpenMP in the original program is carried out. It is shown that the acceleration of calculations depends on the number of cells of the calculation grid. The results of the fluid flow modeling around a circular cylinder at Re = 1000 are demonstrated, which are obtained 30 times faster than with the calculations obtained with optimized lattice Boltzmann method and OpenMP technology.


Sign in / Sign up

Export Citation Format

Share Document