Level Set-Based Topology Optimization in an Incompressible Viscous Fluid Applying Immersed Boundary Method on Wall Treatment

2016 ◽  
Vol 2016.26 (0) ◽  
pp. 2309
Author(s):  
Atsushi KOGUCHI ◽  
Seiji KUBO ◽  
Kentaro YAJI ◽  
Takayuki YAMADA ◽  
Kazuhiro IZUI ◽  
...  
2021 ◽  
pp. 110630
Author(s):  
Seiji Kubo ◽  
Atsushi Koguchi ◽  
Kentaro Yaji ◽  
Takayuki Yamada ◽  
Kazuhiro Izui ◽  
...  

Author(s):  
Claudia Günther ◽  
Matthias Meinke ◽  
Wolfgang Schröder

In this work, a Cartesian-grid immersed boundary method using a cut-cell approach is applied to three-dimensional in-cylinder flow. A hierarchically coupled level-set solver is used to capture the boundary motion by a signed distance function. Topological changes in the geometry due to the opening and closing events of the valves are modeled consistently using multiple signed distance functions for the different components of the engine and taking advantage of a level-set reinitialization method. A continuous discretization of the flow equations in time near the moving interfaces is used to prevent nonphysical oscillations. To ensure an efficient implementation, independent grid adaptation for the flow and the level-set grid is applied. A narrow band approach and an efficient joining/splitting algorithm for the level-set functions minimize the computational overhead to track multiple interfaces. The ability of the current method to handle complex 3D setups is demonstrated for the interface capturing and the flow solution in a three-dimensional piston engine geometry.


Sign in / Sign up

Export Citation Format

Share Document