signed distance
Recently Published Documents


TOTAL DOCUMENTS

254
(FIVE YEARS 76)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Aashay A. Bhise ◽  
Stuti Garg ◽  
Ashwini Ratnoo ◽  
Debasish Ghose

2022 ◽  
Author(s):  
Erik Brodin ◽  
Xinfeng Gao ◽  
Stephen M. Guzik ◽  
Phillip Colella ◽  
Todd Weisgraber

Author(s):  
Ming Han ◽  
Jingqin Wang ◽  
Jingtao Wang ◽  
Junying Meng ◽  
Ying Cheng

The traditional mean shift algorithm used fixed kernels or symmetric kernel function, which will cause the target tracking lost or failure. The target tracking algorithm based on mean shift with adaptive bandwidth was proposed. Firstly, the signed distance constraint function was introduced to produce the anisotropic kernel function based on signed distance kernel function. This anisotropic kernel function satisfies that the value of the region function outside the target is zero, which provides accurate tracking window for the target tracking. Secondly, calculate the mean shift window center of anisotropic kernel function template, the theory basis is the sum of vector weights from the sample point in the tracking window to the center point is zero. Thirdly, anisotropic kernel function templates adaptive update implementation by similarity threshold to limit the change of the template between two sequential pictures, so as to realize real-time precise tracking. Finally, the contrast experimental results show that our algorithm has good accuracy and high real time.


2021 ◽  
pp. 103166
Author(s):  
Wenjuan Hou ◽  
Chen Zong ◽  
Pengfei Wang ◽  
Shiqing Xin ◽  
Shuangmin Chen ◽  
...  

2021 ◽  
Author(s):  
Javier Pardo-Diaz ◽  
Philip Poole ◽  
Mariano Beguerisse-Diaz ◽  
Charlotte Deane ◽  
Gesine Reinert

Even within well-studied organisms, many genes lack useful functional annotations. One way to generate such functional information is to infer biological relationships between genes or proteins, using a network of gene coexpression data that includes functional annotations. Signed distance correlation has proved useful for the construction of unweighted gene coexpression networks. However, transforming correlation values into unweighted networks may lead to a loss of important biological information related to the intensity of the correlation. Here introduce a principled method to construct \emph{weighted} gene coexpression networks using signed distance correlation. These networks contain weighted edges only between those pairs of genes whose correlation value is higher than a given threshold. We analyse data from different organisms and find that networks generated with our method based on signed distance correlation are more stable and capture more biological information compared to networks obtained from Pearson correlation. Moreover, we show that signed distance correlation networks capture more biological information than unweighted networks based on the same metric. While we use biological data sets to illustrate the method, the approach is general and can be used to construct networks in other domains.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2730
Author(s):  
Avelina Hadji-Kyriacou ◽  
Ognjen Arandjelović

Raymarching is a technique for rendering implicit surfaces using signed distance fields. It has been known and used since the 1980s for rendering fractals and CSG (constructive solid geometry) surfaces, but has rarely been used for commercial rendering applications such as film and 3D games. Raymarching was first used for photorealistic rendering in the mid 2000s by demoscene developers and hobbyist graphics programmers, receiving little to no attention from the academic community and professional graphics engineers. In the present work, we explain why the use of Simple and Fast Multimedia Library (SFML) by nearly all existing approaches leads to a number of inefficiencies, and hence set out to develop a CUDA oriented approach instead. We next show that the usual data handling pipeline leads to further unnecessary data flow overheads and therefore propose a novel pipeline structure that eliminates much of redundancy in the manner in which data are processed and passed. We proceed to introduce a series of data structures which were designed with the specific aim of exploiting the pipeline’s strengths in terms of efficiency while achieving a high degree of photorealism, as well as the accompanying models and optimizations that ultimately result in an engine which is capable of photorealistic and real-time rendering on complex scenes and arbitrary objects. Lastly, the effectiveness of our framework is demonstrated in a series of experiments which compare our engine both in terms of visual fidelity and computational efficiency with the leading commercial and open source solutions, namely Unreal Engine and Blender.


Sign in / Sign up

Export Citation Format

Share Document