scholarly journals 622 Control method of Inverted Pendulum with an unknown standing angle by reinforcement learning

2005 ◽  
Vol 2005.42 (0) ◽  
pp. 221-222
Author(s):  
Nobuo Yagihashi ◽  
Matuzo Takamura
Author(s):  
Gokhan Demirkiran ◽  
Ozcan Erdener ◽  
Onay Akpinar ◽  
Pelin Demirtas ◽  
M. Yagiz Arik ◽  
...  

2021 ◽  
Vol 54 (3-4) ◽  
pp. 417-428
Author(s):  
Yanyan Dai ◽  
KiDong Lee ◽  
SukGyu Lee

For real applications, rotary inverted pendulum systems have been known as the basic model in nonlinear control systems. If researchers have no deep understanding of control, it is difficult to control a rotary inverted pendulum platform using classic control engineering models, as shown in section 2.1. Therefore, without classic control theory, this paper controls the platform by training and testing reinforcement learning algorithm. Many recent achievements in reinforcement learning (RL) have become possible, but there is a lack of research to quickly test high-frequency RL algorithms using real hardware environment. In this paper, we propose a real-time Hardware-in-the-loop (HIL) control system to train and test the deep reinforcement learning algorithm from simulation to real hardware implementation. The Double Deep Q-Network (DDQN) with prioritized experience replay reinforcement learning algorithm, without a deep understanding of classical control engineering, is used to implement the agent. For the real experiment, to swing up the rotary inverted pendulum and make the pendulum smoothly move, we define 21 actions to swing up and balance the pendulum. Comparing Deep Q-Network (DQN), the DDQN with prioritized experience replay algorithm removes the overestimate of Q value and decreases the training time. Finally, this paper shows the experiment results with comparisons of classic control theory and different reinforcement learning algorithms.


Author(s):  
Qingyuan Zheng ◽  
Duo Wang ◽  
Zhang Chen ◽  
Yiyong Sun ◽  
Bin Liang

Single-track two-wheeled robots have become an important research topic in recent years, owing to their simple structure, energy savings and ability to run on narrow roads. However, the ramp jump remains a challenging task. In this study, we propose to realize a single-track two-wheeled robot ramp jump. We present a control method that employs continuous action reinforcement learning techniques for single-track two-wheeled robot control. We design a novel reward function for reinforcement learning, optimize the dimensions of the action space, and enable training under the deep deterministic policy gradient algorithm. Finally, we validate the control method through simulation experiments and successfully realize the single-track two-wheeled robot ramp jump task. Simulation results validate that the control method is effective and has several advantages over high-dimension action space control, reinforcement learning control of sparse reward function and discrete action reinforcement learning control.


Sign in / Sign up

Export Citation Format

Share Document