medium access
Recently Published Documents


TOTAL DOCUMENTS

2358
(FIVE YEARS 362)

H-INDEX

61
(FIVE YEARS 8)

Author(s):  
Zaid Hashim Jaber ◽  
Dheyaa Jasim Kadhim ◽  
Ahmed Sabah Al-Araji

<p><span>Medium access control (MAC) protocol design plays a crucial role to increase the performance of wireless communications and networks. The channel access mechanism is provided by MAC layer to share the medium by multiple stations. Different types of wireless networks have different design requirements such as throughput, delay, power consumption, fairness, reliability, and network density, therefore, MAC protocol for these networks must satisfy their requirements. In this work, we proposed two multiplexing methods for modern wireless networks: Massive multiple-input-multiple-output (MIMO) and power domain non-orthogonal multiple access (PD-NOMA). The first research method namely Massive MIMO uses a massive number of antenna elements to improve both spectral efficiency and energy efficiency. On the other hand, the second research method (PD-NOMA) allows multiple non-orthogonal signals to share the same orthogonal resources by allocating different power level for each station. PD-NOMA has a better spectral efficiency over the orthogonal multiple access methods. A review of previous works regarding the MAC design for different wireless networks is classified based on different categories. The main contribution of this research work is to show the importance of the MAC design with added optimal functionalities to improve the spectral and energy efficiencies of the wireless networks.</span></p>


2022 ◽  
Vol 22 (2) ◽  
pp. 1-26
Author(s):  
Nikumani Choudhury ◽  
Rakesh Matam ◽  
Mithun Mukherjee ◽  
Jaime Lloret

The IEEE 802.15.4 standard is one of the widely adopted specifications for realizing different applications of the Internet of Things. It defines several physical layer options and Medium Access Control (MAC) sub-layer for devices with low-power operating at low data rates. As devices implementing this standard are primarily battery-powered, minimizing their power consumption is a significant concern. Duty-cycling is one such power conserving mechanism that allows a device to schedule its active and inactive radio periods effectively, thus preventing energy drain due to idle listening. The standard specifies two parameters, beacon order and superframe order, which define the active and inactive period of a device. However, it does not specify a duty-cycling scheme to adapt these parameters for varying network conditions. Existing works in this direction are either based on superframe occupation ratio or buffer/queue length of devices. In this article, the particular limitations of both the approaches mentioned above are presented. Later, a novel duty-cycling mechanism based on MAC parameters is proposed. Also, we analyze the role of synchronization schemes in achieving efficient duty-cycles in synchronized cluster-tree network topologies. A Markov model has also been developed for the MAC protocol to estimate the delay and energy consumption during frame transmission.


Author(s):  
Anitha Krishna Gowda ◽  
Ananda Babu Jayachandra ◽  
Raviprakash Madenur Lingaraju ◽  
Vinay Doddametikurke Rajkumar

<p><span>Hybrid medium access control (MAC) scheme is one of the prominent mechanisms to offer energy efficiency in wireless sensor network where the potential features for both contention-based and schedule-based approaches are mechanized. However, the review of existing hybrid MAC scheme shows many loopholes where mainly it is observed that there is too much inclusion of time-slotting or else there is an inclusion of sophisticated mechanism not meant for offering flexibility to sensor node towards extending its services for upcoming applications of it. Therefore, this manuscript introduces a novel hybrid MAC scheme which is meant for offering cost effective and simplified scheduling operation in order to balance the performance of energy efficiency along with data aggregation performance. The simulated outcome of the study shows that proposed system offers better energy consumption, better throughput, reduced memory consumption, and faster processing in contrast to existing hybrid MAC protocols.</span></p>


2022 ◽  
Vol 69 (1) ◽  
Author(s):  
Godwin Onyekachi Ugwu ◽  
Udora Nwabuoku Nwawelu ◽  
Mamilus Aginwa Ahaneku ◽  
Cosmas Ikechukwu Ani

AbstractThe enhanced distributed channel access (EDCA) protocol is a supplement to IEEE 802.11 medium access control (MAC), ratified by IEEE 802.11e task group to support quality of service (QoS) requirements of both data and real-time applications. Previous research show that it supports priority scheme for multimedia traffic but strict QoS is not guaranteed. This can be attributed to inappropriate tuning of the medium access parameters. Thus, an in-depth analysis of the EDCA protocol and ways of tuning medium access parameters to improve QoS requirements for multimedia traffic is presented in this work. An EDCA model was developed and simulated using MATLAB to assess the effect of differentiating contention window (CW) and arbitration inter-frame space (AIFS) of different traffic on QoS parameters. The optimal performance, delay, and maximum sustainable throughput for each traffic type were computed under saturation load. Insight shows that traffic with higher priority values acquired most of the available channels and starved traffic with lower priority values. The AIFS has more influence on the QoS of EDCA protocol. It was also observed that small CW values generate higher packet drops and collision rate probability. Thus, EDCA protocol provides mechanism for service differentiation which strongly depends on channel access parameters: CW sizes and AIFS.


Author(s):  
Pan Zhang ◽  

Based on the rolling horizon optimization strategy, the networked robust predictive control with medium access constraints and packet loss is studied. Firstly, considering the influence of network factors such as medium access constraints and packet loss, Markov jump rule and Bernoulli independent and identically distributed process are used to transform the network problem into the robust problem of networked control system. According to the established Markov jump system model and stability analysis, a robust predictive controller for networked control systems is designed by using linear matrix inequality (LMI) method, which makes the system asymptotically stable. Finally, a numerical example is given to verify the effectiveness of the proposed control method.Networked control system; medium access constraints; packet loss; robust predictive controller.


Author(s):  
Ziyad Khalaf Farej ◽  
Omer Mohammed Ali

The increase in the number of users on wireless local area networks (WLAN) and the development of large size applications have increased the demand for high-speed data rate and low latency. The IEEE 802.11ac was developed to provide very high throughput WLANs. Many enhancements are added to the medium access control (MAC) and physical (PHY) layers to increase data rate and improve network performance, these features enable the IEEE 802.11ac standard to provide quality of service (QoS) for multimedia applications. This paper concentrates on the impact of QoS on the system performance in term of delay and throughput. Four scenarios are proposed to investigate the network performance with different (from 1 up to 8) spatial stream (SS). The objective modular network testbed in C++ (OMNet++ modeler v5.5.1) is used to simulate and model these scenarios. For 8×8 SS, the results of simulation show the best throughput (maximum) and delay (minimum) values of (622, 484, 399.3, 382.96 Mbps) and (0.0211, 0.0589, 0.1037, 0.1202 sec) for 5, 15, 30 and 45 node number scenarios respectively. Although the number of nodes increases, the system performance decreases, however when QoS is deployed the performance is enhanced and its best improvement is obtained at the highest (45) node number scenario with values of 94.4% and 56.1% for throughput and delay respectively.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-21
Author(s):  
Javier Schandy ◽  
Simon Olofsson ◽  
Nicolás Gammarano ◽  
Leonardo Steinfeld ◽  
Thiemo Voigt

The use of directional antennas for wireless communications brings several benefits, such as increased communication range and reduced interference. One example of directional antennas are electronically switched directional (ESD) antennas that can easily be integrated into Wireless Sensor Networks (WSNs) due to their small size and low cost. However, current literature questions the benefits of using ESD antennas in WSNs due to the increased likelihood of hidden terminals and increased power consumption. This is mainly because earlier studies have used directionality for transmissions but not for reception. In this article, we introduce novel cross-layer optimizations to fully utilize the benefits of using directional antennas. We modify the Medium Access Control (MAC) , routing, and neighbor discovery mechanisms to support directional communication. We focus on convergecast investigating a large number of different network topologies. Our experimental results, both in simulation and with real nodes, show when the traffic is dense, networks with directional antennas can significantly outperform networks with omnidirectional ones in terms of packet delivery rate, energy consumption, and energy per received packet.


Sign in / Sign up

Export Citation Format

Share Document