reinforcement learning algorithm
Recently Published Documents


TOTAL DOCUMENTS

376
(FIVE YEARS 178)

H-INDEX

19
(FIVE YEARS 6)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 132
Author(s):  
Jianfeng Zheng ◽  
Shuren Mao ◽  
Zhenyu Wu ◽  
Pengcheng Kong ◽  
Hao Qiang

To solve the problems of poor exploration ability and convergence speed of traditional deep reinforcement learning in the navigation task of the patrol robot under indoor specified routes, an improved deep reinforcement learning algorithm based on Pan/Tilt/Zoom(PTZ) image information was proposed in this paper. The obtained symmetric image information and target position information are taken as the input of the network, the speed of the robot is taken as the output of the next action, and the circular route with boundary is taken as the test. The improved reward and punishment function is designed to improve the convergence speed of the algorithm and optimize the path so that the robot can plan a safer path while avoiding obstacles first. Compared with Deep Q Network(DQN) algorithm, the convergence speed after improvement is shortened by about 40%, and the loss function is more stable.


2022 ◽  
Vol 73 ◽  
pp. 117-171
Author(s):  
Adrien Bolland ◽  
Ioannis Boukas ◽  
Mathias Berger ◽  
Damien Ernst

We consider the joint design and control of discrete-time stochastic dynamical systems over a finite time horizon. We formulate the problem as a multi-step optimization problem under uncertainty seeking to identify a system design and a control policy that jointly maximize the expected sum of rewards collected over the time horizon considered. The transition function, the reward function and the policy are all parametrized, assumed known and differentiable with respect to their parameters. We then introduce a deep reinforcement learning algorithm combining policy gradient methods with model-based optimization techniques to solve this problem. In essence, our algorithm iteratively approximates the gradient of the expected return via Monte-Carlo sampling and automatic differentiation and takes projected gradient ascent steps in the space of environment and policy parameters. This algorithm is referred to as Direct Environment and Policy Search (DEPS). We assess the performance of our algorithm in three environments concerned with the design and control of a mass-spring-damper system, a small-scale off-grid power system and a drone, respectively. In addition, our algorithm is benchmarked against a state-of-the-art deep reinforcement learning algorithm used to tackle joint design and control problems. We show that DEPS performs at least as well or better in all three environments, consistently yielding solutions with higher returns in fewer iterations. Finally, solutions produced by our algorithm are also compared with solutions produced by an algorithm that does not jointly optimize environment and policy parameters, highlighting the fact that higher returns can be achieved when joint optimization is performed.


2021 ◽  
Vol 2138 (1) ◽  
pp. 012011
Author(s):  
Yanwei Zhao ◽  
Yinong Zhang ◽  
Shuying Wang

Abstract Path planning refers to that the mobile robot can obtain the surrounding environment information and its own state information through the sensor carried by itself, which can avoid obstacles and move towards the target point. Deep reinforcement learning consists of two parts: reinforcement learning and deep learning, mainly used to deal with perception and decision-making problems, has become an important research branch in the field of artificial intelligence. This paper first introduces the basic knowledge of deep learning and reinforcement learning. Then, the research status of deep reinforcement learning algorithm based on value function and strategy gradient in path planning is described, and the application research of deep reinforcement learning in computer game, video game and autonomous navigation is described. Finally, I made a brief summary and outlook on the algorithms and applications of deep reinforcement learning.


2021 ◽  
Author(s):  
An-Chi Chuang ◽  
Nen-Fu Huang ◽  
Jian-Wei Tzeng ◽  
Chia-An Lee ◽  
You-Xuan Huang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xiaoqiang Sun ◽  
Zhiwei Sun ◽  
Ting Wang ◽  
Jie Feng ◽  
Jiakai Wei ◽  
...  

Based on the clinical states of the patient, dynamic treatment regime technology can provide various therapeutic methods, which is helpful for medical treatment policymaking. Reinforcement learning is an important approach for developing this technology. In order to implement the reinforcement learning algorithm efficiently, the computation of health data is usually outsourced to the untrustworthy cloud server. However, it may leak, falsify, or delete private health data. Encryption is a common method for solving this problem. But the cloud server is difficult to calculate encrypted health data. In this paper, based on Cheon et al.’s approximate homomorphic encryption scheme, we first propose secure computation protocols for implementing comparison, maximum, exponentiation, and division. Next, we design a homomorphic reciprocal of square root protocol firstly, which only needs one approximate computation. Based on the proposed secure computation protocols, we design a secure asynchronous advantage actor-critic reinforcement learning algorithm for the first time. Then, it is used to implement a secure treatment decision-making algorithm. Simulation results show that our secure computation protocols and algorithms are feasible.


Sign in / Sign up

Export Citation Format

Share Document