pendulum system
Recently Published Documents


TOTAL DOCUMENTS

991
(FIVE YEARS 208)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
Vol 8 ◽  
Author(s):  
Quanbao Cheng ◽  
Lin Zhou ◽  
Kai Li

The inverted pendulum system has great potential for various engineering applications, and its stabilization is challenging because of its unstable characteristic. The well-known Kapitza’s pendulum adopts the parametrically excited oscillation to stabilize itself, which generally requires a complex controller. In this paper, self-sustained oscillation is utilized to stabilize an inverted pendulum, which is made of a V-shaped, optically responsive liquid crystal elastomer (LCE) bar under steady illumination. Based on the well-established dynamic LCE model, a theoretical model of the LCE inverted pendulum is formulated, and numerical calculations show that it always develops into the unstable static state or the self-stabilized oscillation state. The mechanism of the self-stabilized oscillation originates from the reversal of the gravity moment of the inverted pendulum accompanied with its own movement. The critical condition for triggering self-stabilized oscillation is fully investigated, and the effects of the system parameters on the stability of the inverted pendulum are explored. The self-stabilized inverted pendulum does not need an additional controller and offers new designs of self-stabilized inverted pendulum systems for potential applications in robotics, military industry, aerospace, and other fields.


2022 ◽  
Vol 12 ◽  
Author(s):  
Daša Gorjan ◽  
Nejc Šarabon ◽  
Jan Babič

Understanding the relation between the motion of the center of mass (COM) and the center of pressure (COP) is important to understand the underlying mechanisms of maintaining body equilibrium. One way to investigate this is to stabilize COM by fixing the joints of the human and looking at the corresponding COP reactions. However, this approach constrains the natural motion of the human. To avoid this shortcoming, we stabilized COM without constraining the joint movements by using an external stabilization method based on inverted cart-pendulum system. Interestingly, this method only stabilized COM of a subgroup of participants and had a destabilizing effect for others which implies significant variability in inter-individual postural control. The aim of this work was to investigate the underlying causes of inter-individual variability by studying the postural parameters of quiet standing before the external stabilization. Eighteen volunteers took part in the experiment where they were standing on an actuated cart for 335 s. In the middle of this period we stabilized their COM in anteroposterior direction for 105 s. To stabilize the COM, we controlled the position of the cart using a double proportional–integral–derivative controller. We recorded COM position throughout the experiment, calculated its velocity, amplitude, and frequency during the quiet standing before the stabilization, and used these parameters as features in hierarchical clustering method. Clustering solution revealed that postural parameters of quiet standing before the stabilization cannot explain the inter-individual variability of postural responses during the external COM stabilization. COM was successfully stabilized for a group of participants but had a destabilizing effect on the others, showing a variability in individual postural control which cannot be explained by postural parameters of quiet-stance.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 243
Author(s):  
Lotfi Messikh ◽  
El-Hadi Guechi ◽  
Sašo Blažič

In this paper, a pole-independent, single-input, multi-output explicit linear MPC controller is proposed to stabilize the fourth-order cart–inverted-pendulum system around the desired equilibrium points. To circumvent an obvious stability problem, a generalized prediction model is proposed that yields an MPC controller with four tuning parameters. The first two parameters, namely the horizon time and the relative cart–pendulum weight factor, are automatically adjusted to ensure a priori prescribed system gain margin and fast pendulum response while the remaining two parameters, namely the pendulum and cart velocity weight factors, are maintained as free tuning parameters. The comparison of the proposed method with some optimal control methods in the absence of disturbance input shows an obvious advantage in the average peak efficiency in favor of the proposed SIMO MPC controller at the price of slightly reduced speed efficiency. Additionally, none of the compared controllers can achieve a system gain margin greater than 1.63, while the proposed one can go beyond that limit at the price of additional degradation in the speed efficiency.


2021 ◽  
pp. 107754632110429
Author(s):  
Pouriya Pourgholam ◽  
Hamid Moeenfard

Accurate modeling and efficient control of inverted pendulums have always been a challenge for researchers. So, the current research aims to achieve the following objectives: (I) proposing a comprehensive dynamic model for the inverted pendulums which accounts for the flexibility of the pendulum bar and (II) suggesting an appropriate supervisory fuzzy-pole placement control strategy for stabilizing the pendulum system. Using a Lagrangian formulation, the equations of motion are derived and linearized. Then, a state feedback controller with a reduced-order observer is designed to stabilize the system. Closed-loop simulations reveal that at least six modes shall be considered in the dynamic equations. To improve the quality of the transient response, a novel fuzzy system is developed for real-time assignment of the controller poles. Simulation results demonstrate that the control quality is significantly improved by adding a supervisory fuzzy system to the control loop. The developed approach for dynamic modeling of the system, and the idea of multi-level fuzzy-pole placement control architecture developed in this paper, may be successfully applied to improve the response specifications in other dynamic systems.


2021 ◽  
Vol 11 (23) ◽  
pp. 11567
Author(s):  
Wael S. Amer ◽  
Tarek S. Amer ◽  
Roman Starosta ◽  
Mohamed A. Bek

The major objective of this research is to study the planar dynamical motion of 2DOF of an auto-parametric pendulum attached with a damped system. Using Lagrange’s equations in terms of generalized coordinates, the fundamental equations of motion (EOM) are derived. The method of multiple scales (MMS) is applied to obtain the approximate solutions of these equations up to the second order of approximation. Resonance cases are classified, in which the primary external and internal resonance are investigated simultaneously to establish both the solvability conditions and the modulation equations. In the context of the stability conditions of these solutions, the equilibrium points are obtained and graphically displayed to derive the probable steady-state solutions near the resonances. The temporal histories of the attained results, the amplitude, and the phases of the dynamical system are depicted in graphs to describe the motion of the system at any instance. The stability and instability zones of the system are explored, and it is discovered that the system’s performance is stable for a significant number of its variables.


Robotica ◽  
2021 ◽  
pp. 1-21
Author(s):  
Nurhan Gürsel Özmen ◽  
Musa Marul

Abstract Inverted pendulum systems (IPSs) are mostly used to demonstrate the control rules for keeping the pendulum at a balanced upright position due to a slight force applied to the cart system. This paper presents an application for nonlinear control of an x-z type IPS by using a proportional-integral-derivative (PID) controller with newly established evolutionary tuning method Lightning Search Algorithm (LSA). A single, double and triple PID controller system is tested with the conventional and the self-tuning controllers to get a better understanding of the performance of the given system. The mathematical modelling of the x-z type IPS, the theoretical explanation of the LSA and the simulation analysis of the x-z type IPS is put forward entirely. The LSA algorithm solves the optimization problem of PID controller in an evolutionary way. The most effective way of making comparisons is evaluating the performance results with a well-known optimization technique or with the previous accepted results. We have compared the system’s performance with particle swarm optimization and with a classical control study in the literature. According to the simulation results, LSA-tuned PID controller has the ability to decrease the overshoot better than the conventional-tuned controllers. Finally, it can be concluded that the LSA-supported PID can better stabilize the pendulum angle and track the reference better for non-disturbed and the slightly disturbed systems.


Author(s):  
Van-Phong Vu ◽  
Minh-Tam Nguyen ◽  
Anh-Vu Nguyen ◽  
Vi-Do Tran ◽  
Tran Minh Nguyet Nguyen

<span lang="EN-US">A new approach based on linear matrix inequality (LMI) technique for stabilizing the inverted pendulum is developed in this article. The unknown states are estimated as well as the system is stabilized simultaneously by employing the observer-based controller. In addition, the impacts of the uncertainties are taken into consideration in this paper. Unlike the previous studies, the uncertainties in this study are unnecessary to satisfy the bounded constraints. These uncertainties will be converted into the unknown input disturbances, and then a disturbance observer-based controller will be synthesized to estimate the information of the unknown states, eliminate completely the effects of the uncertainties, and stabilize inverted pendulum system. With the support of lyapunov methodology, the conditions for constructing the observer and controller under the framework of linear matrix inequalities (LMIs) are derived in main theorems. Finally, the simulations for system with and without uncertainties are exhibited to show the merit and effectiveness of the proposed methods.</span>


Sign in / Sign up

Export Citation Format

Share Document