Study of velocity and temperature fields behind the vertical flat plate composed of different porous materials

2020 ◽  
Vol 2020 (0) ◽  
pp. 17A20
Author(s):  
Takumi SETO ◽  
Yutaro OKADA ◽  
Hiroki SAWAYA ◽  
Kazumi TSUNODA
1997 ◽  
Vol 119 (1) ◽  
pp. 89-96 ◽  
Author(s):  
A. J. Chamkha

Natural convection flow of an absorbing fluid up a uniform porous medium supported by a semi-infinite, ideally transparent, vertical flat plate due to solar radiation is considered. Boundary-layer equations are derived using the usual Boussinesq approximation and accounting for applied incident radiation flux. A convection type boundary condition is used at the plate surface. These equations exhibit no similarity solution. However, the local similarity method is employed for the solution of the present problem so as to allow comparisons with previously published work. The resulting approximate nonlinear ordinary differential equations are solved numerically by a standard implicit iterative finite-difference method. Graphical results for the velocity and temperature fields as well as the boundary friction and Nusselt number are presented and discussed.


2016 ◽  
Vol 26 (3/4) ◽  
pp. 1187-1225 ◽  
Author(s):  
Nicola Massarotti ◽  
Michela Ciccolella ◽  
Gino Cortellessa ◽  
Alessandro Mauro

Purpose – The purpose of this paper is to focus on the numerical analysis of transient free convection heat transfer in partially porous cylindrical domains. The authors analyze the dependence of velocity and temperature fields on the geometry, by analyzing transient flow behavior for different values of cavity aspect ratio and radii ratio; both inner and outer radius are assumed variable in order to not change the difference ro-ri. Moreover, several Darcy numbers have been considered. Design/methodology/approach – A dual time-stepping procedure based on the transient artificial compressibility version of the characteristic-based split algorithm has been adopted in order to solve the transient equations of the generalized model for heat and fluid flow through porous media. The present model has been validated against experimental data available in the scientific literature for two different problems, steady-state free convection in a porous annulus and transient natural convection in a porous cylinder, showing an excellent agreement. Findings – For vertically divided half porous cavities, with Rayleigh numbers equal to 3.4×106 for the 4:1 cavity and 3.4×105 for the 8:1 cavity, the numerical results show that transient oscillations tend to disappear in presence of cylindrical geometry, differently from what happens for rectangular one. The magnitude of this phenomenon increases with radii ratio; the porous layer also affects the stability of velocity and temperature fields, as oscillations tend to decrease in presence of a porous matrix with lower value of the Darcy number. Research limitations/implications – A proper analysis of partially porous annular cavities is fundamental for the correct estimation of Nusselt numbers, as the formulas provided for rectangular domains are not able to describe these problems. Practical implications – The proposed model represents a useful tool for the study of transient natural convection problems in porous and partially porous cylindrical and annular cavities, typical of many engineering applications. Moreover, a fully explicit scheme reduces the computational costs and ensures flexibility. Originality/value – This is the first time that a fully explicit finite element scheme is employed for the solution of transient natural convection in partially porous tall annular cavities.


Sign in / Sign up

Export Citation Format

Share Document