velocity and temperature fields
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 20)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Brian Straughan

AbstractA model for thermal convection with generalized friction is investigated. It is shown that the linear instability threshold is the same as the global stability one. In addition, decay of the energy in the $$L^2$$ L 2 norm is shown for the perturbation velocity and temperature fields. However, due to the presence of the generalized friction we establish exponential decay in the $$L^{\beta +1}$$ L β + 1 norm for the perturbation temperature, where $$\beta >1$$ β > 1 .


2021 ◽  
Vol 2119 (1) ◽  
pp. 012056
Author(s):  
P I Geshev

Abstract The bridge consists of liquid held by surface tension forces between two inclined tubes in an LNG heat exchanger. The shape of the bridge is calculated by the hydrostatic equation, which is reduced to a nonlinear integral equation and resolved by the Newton method. The velocity and temperature fields in the bridge are described by the Navier-Stokes and energy equations, respectively. They are reduced to the boundary integral equations and calculated by the method of boundary elements. Heat transfer coefficient is calculated for evaporating bridge and the length of total bridge evaporation is estimated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aamir Ali ◽  
Tasmia Kanwal ◽  
Muhammad Awais ◽  
Zahir Shah ◽  
Poom Kumam ◽  
...  

AbstractThe current research investigates the thermal radiations and non-uniform heat flux impacts on magnetohydrodynamic hybrid nanofluid (CuO-Fe2O3/H2O) flow along a stretching cylinder, which is the main aim of this study. The velocity slip conditions have been invoked to investigate the slippage phenomenon on the flow. The impact of induced magnetic field with the assumption of low Reynolds number is imperceptible. Through the use of appropriate non-dimensional parameters and similarity transformations, the ruling PDE’s (partial differential equations) are reduced to set of ODE’s (ordinary differential equations), which are then numerically solved using Adams–Bashforth Predictor–Corrector method. Velocity and temperature fields with distinct physical parameters are investigated and explored graphically. The main observations about the hybrid nanofluid and non-uniform heat flux are analyzed graphically. A decrease in the velocity of the fluid is noted with addition of Hybrid nanofluid particles while temperature of the fluid increases by adding the CuO-Fe2O3 particles to the base fluid. Also, velocity of the fluid decreases when we incorporate the effects of magnetic field and slip. Raise in curvature parameter γ caused enhancement of velocity and temperature fields at a distance from the cylinder but displays opposite behavior nearby the surface of cylinder. The existence of heat generation and absorption for both mass dependent and time dependent parameters increases the temperature of the fluid.


Author(s):  
Yi Su ◽  
Bin Zhang ◽  
Junqing Hou ◽  
Yifeng Chen ◽  
Jieyu Jiang ◽  
...  

Abstract Swirling flames are important in practical industrial combustors. The dynamic characteristics of swirling flames form complex velocity and temperature fields, which indicate combustion efficiency and influence pollutant emission. A reliable numerical simulation that can calculate the entire velocity and temperature fields is required to understand and investigate the underlying combustion mechanism. The governing equations of the methane swirling combustion process consist of the mass conservation, Navier-Stokes, and energy equations, all of which are solved by the SIMPLE algorithm based on finite volume method. This study performed a simulation using the realizable k-ε and non-premixed models in conjunction with the GRI Mech 3.0 mechanism. The characteristics of swirling combustion were analyzed on the bases of visualizations of temperature distribution, velocity distribution, and streamlines. In each cross section with varying heights from the nozzle, the high velocity and high temperature areas showed similar closed or semi-closed annular structures. In the central longitudinal section, the V-shaped high temperature and high velocity regions showed the swirling structure of the combustion flow field. The high temperature area did not coincide with the high velocity area but was located relatively downstream. The high velocity area was in the periphery of the high temperature area. Furthermore, the effects of swirl blade position on methane combustion characteristics were discussed. The validity of the numerical simulation results was verified by the simultaneous laser measurement of 3D temperature and velocity fields in the swirling flame.


Author(s):  
Kotagiri Srihari

In the present paper on steady flow of a viscous incompressible fluid past a heated stretching sheet with thermal radiation is studied. Magnetic field is applied normal to the flow. With suitable similarity transformations, the momentum and energy equations are reduced to ordinary differential equations. The governing differential equations with corresponding boundary conditions are solved numerically using MATLAB inbuilt solver bvp4c,. Graphical results for velocity and temperature fields, tabular values of Skin-friction and Nusselt numbers are presented and discussed. It is found the temperature of the fluid increases for the increasing values of radiation parameter.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Nattawan Chuchalerm ◽  
Benchawan Wiwatanapataphee ◽  
Wannika Sawangtong

This paper is aimed at presenting thermal slip flow driven by oscillatory pressure gradient in a deformable microchannel of elliptic cross-section. The fully developed flow of Newtonian fluid is considered, and Navier slip is applied on the boundary. The boundary value problem is formulated and applied to the coronary blood flow-heat transfer phenomenon during thermotherapy treatment. Its semianalytical solutions of velocity and temperature fields are carried out by the Ritz method. The effects of oscillatory wall and slip length on velocity and temperature fields of blood are investigated.


2020 ◽  
Vol 15 ◽  
pp. 1-8 ◽  
Author(s):  
Nalimela Pothanna ◽  
P. Aparna

In this paper, the unsteady flow of a fluid of finite depth with an oscillating bottom is examined. The flow is assumed in the absence of viscous dissipation. The governing equations of the flow are decoupled in the velocity and temperature fields. The velocity and temperature fields have been obtained analytically. The effects of various material parameters on these fields have been discussed with the help of graphical illustrations. It is noticed that the upward thrust (ρfy) vanishes when Reiner Rivlin coefficient of viscosity (μc) is zero and the transverse force (ρfz) perpendicular to the flow direction vanishes for thermo-viscosity coefficient (α8) is zero. The external forces generated perpendicular to the flow direction is a special feature of thermo-viscous fluid when compared to the other type of fluids.


Sign in / Sign up

Export Citation Format

Share Document