scholarly journals Appropriate Tool Orientation for Precise Machining for Ball End Milling

Author(s):  
Hisanobu TERAI ◽  
Teruyuki ASAO ◽  
Yoshio MIZUGAKI
Procedia CIRP ◽  
2016 ◽  
Vol 56 ◽  
pp. 143-148 ◽  
Author(s):  
Pan Yang ◽  
Changfeng Yao ◽  
Shaohua Xie ◽  
Dinghua Zhang ◽  
Dou Xing Tang

Author(s):  
Tao Huang ◽  
Xiao-Ming Zhang ◽  
Jürgen Leopold ◽  
Han Ding

In five-axis milling process, the tool path generated by a commercial software seldom takes the dynamics of the machining process into account. The neglect of process dynamics may lead to milling chatter, which causes overcut, quick tool wear, etc., and thus damages workpiece surface and shortens tool life. This motivates us to consider dynamic constraints in the tool path generation. Tool orientation variations in five-axis ball-end milling influence chatter stability and surface location error (SLE) due to the varying tool-workpiece immersion area and cutting force, which inversely provides us a feasible and flexible way to suppress chatter and SLE. However, tool orientations adjustment for suppression of chatter and SLE may cause drastic changes of the tool orientations and affects surface quality. The challenge is to strike a balance between the smooth tool orientations and suppression of chatter and SLE. To overcome the challenge, this paper presents a minimax optimization approach for planning tool orientations. The optimization objective is to obtain smooth tool orientations, by minimizing the maximum variation of the rotational angles between adjacent cutter locations, with constraints of chatter-free and SLE threshold. A dedicated designed ball-end milling experiment is conducted to validate the proposed approach. The work provides new insight into the tool path generation for ball-end milling of sculpture surface; also it would be helpful to decision-making for process parameters optimization in practical complex parts milling operations at shop floor.


CIRP Annals ◽  
2015 ◽  
Vol 64 (1) ◽  
pp. 97-100 ◽  
Author(s):  
S. Ehsan Layegh K. ◽  
I. Enes Yigit ◽  
Ismail Lazoglu

Author(s):  
B.B. Ponomarev ◽  
S.H. Nguyen

Unlike three-axis machining, five-axis machining allows the end tool or workpiece to be oriented at any angle relative to the machine axis OZ. It can be achieved by changing the values of the tool tilt angle and lead angle relative to the surface normal in the contact zone of the tool surface and the workpiece, taking into account the direction of the table feed. The article presents experimental results of analyzing the influences of tool orientation on transverse roughness during ball end milling using 2-flute and 4-flute 8 mm diameter mills. The analysis the arithmetic mean deviation of the assessed profile at various values of tool tilt angle and lead angle showed that the position of the tool point with a zero cutting speed significantly affects the surface quality. The results of the evaluation of the tool orientation influence on the surface roughness enable the selection of optimal tool orientation angles when developing control programs for end milling of free-form surfaces on five-axis CNC milling machines.


Sign in / Sign up

Export Citation Format

Share Document