Effects of tool orientation and surface curvature on surface integrity in ball end milling of TC17

2017 ◽  
Vol 94 (5-8) ◽  
pp. 1699-1710 ◽  
Author(s):  
Changfeng Yao ◽  
Liang Tan ◽  
Pan Yang ◽  
Dinghua Zhang
Procedia CIRP ◽  
2016 ◽  
Vol 56 ◽  
pp. 143-148 ◽  
Author(s):  
Pan Yang ◽  
Changfeng Yao ◽  
Shaohua Xie ◽  
Dinghua Zhang ◽  
Dou Xing Tang

2015 ◽  
Vol 15 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Nandkumar N. Bhopale ◽  
Nilesh Nikam ◽  
Raju S. Pawade

AbstractThis paper presents the application of Response Surface Methodology (RSM) coupled with Teaching Learning Based Optimization Technique (TLBO) for optimizing surface integrity of thin cantilever type Inconel 718 workpiece in ball end milling. The machining and tool related parameters like spindle speed, milling feed, axial depth of cut and tool path orientation are optimized with considerations of multiple response like deflection, surface roughness, and micro hardness of plate. Mathematical relationship between process parameters and deflection, surface roughness and microhardness are found out by using response surface methodology. It is observed that after optimizing the process that at the spindle speed of 2,000 rpm, feed 0.05 mm/tooth/rev, plate thickness of 5.5 mm and 15° workpiece inclination with horizontal tool path gives favorable surface integrity.


2014 ◽  
Author(s):  
Nandkumar N. Bhopale ◽  
Raju S. Pawade

The paper presents the surface integrity analysis in ball end milling of thin shaped cantilever plate of Inconel 718. It is noticed that the workpiece deflection has significantly contributed to machined surface integrity in terms of surface topography and subsurface microhardness. The ball end milling performed with 15° workpiece inclination with horizontal tool path produced higher surface integrity which varies with the location of machined surface region. In general, the mid portion of the machined plate shows lower surface roughness and microhardness with less surface defects.


Procedia CIRP ◽  
2018 ◽  
Vol 71 ◽  
pp. 260-266 ◽  
Author(s):  
Qi Liu ◽  
Jian Cheng ◽  
Yong Xiao ◽  
Hao Yang ◽  
Mingjun Chen

Author(s):  
Tao Huang ◽  
Xiao-Ming Zhang ◽  
Jürgen Leopold ◽  
Han Ding

In five-axis milling process, the tool path generated by a commercial software seldom takes the dynamics of the machining process into account. The neglect of process dynamics may lead to milling chatter, which causes overcut, quick tool wear, etc., and thus damages workpiece surface and shortens tool life. This motivates us to consider dynamic constraints in the tool path generation. Tool orientation variations in five-axis ball-end milling influence chatter stability and surface location error (SLE) due to the varying tool-workpiece immersion area and cutting force, which inversely provides us a feasible and flexible way to suppress chatter and SLE. However, tool orientations adjustment for suppression of chatter and SLE may cause drastic changes of the tool orientations and affects surface quality. The challenge is to strike a balance between the smooth tool orientations and suppression of chatter and SLE. To overcome the challenge, this paper presents a minimax optimization approach for planning tool orientations. The optimization objective is to obtain smooth tool orientations, by minimizing the maximum variation of the rotational angles between adjacent cutter locations, with constraints of chatter-free and SLE threshold. A dedicated designed ball-end milling experiment is conducted to validate the proposed approach. The work provides new insight into the tool path generation for ball-end milling of sculpture surface; also it would be helpful to decision-making for process parameters optimization in practical complex parts milling operations at shop floor.


CIRP Annals ◽  
2015 ◽  
Vol 64 (1) ◽  
pp. 97-100 ◽  
Author(s):  
S. Ehsan Layegh K. ◽  
I. Enes Yigit ◽  
Ismail Lazoglu

Sign in / Sign up

Export Citation Format

Share Document