OS2-04 Effects of Rotor Tip Clearance and Guide Vane Shape on the Performance of Impulse Turbine for Wave Energy Conversion

Author(s):  
Manabu TAKAO ◽  
Naotsugu SHIGEMATSU ◽  
Toshiaki SETOGUCHI ◽  
Kenji KANEKO
2016 ◽  
Vol 2016.54 (0) ◽  
pp. _1204-1_-_1204-2_
Author(s):  
Haruka KATSUBE ◽  
M M Ashraful ALAM ◽  
Genya MASAKI ◽  
Shinya OKUHARA ◽  
Manabu TAKAO ◽  
...  

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Bruno Pereiras ◽  
Francisco Castro ◽  
Abdelatif el Marjani ◽  
Miguel A. Rodríguez

Turbines for wave energy conversion have a special feature to be taken into account in the study of the tip leakage flow: These turbines are self-rectifying, which work inside a cyclically bidirectional flow alternatively as an inflow/outflow turbine. The phenomena at the blade tip will be different in these two situations. Moreover, it is necessary to take into account the tip clearance of the guide vanes because it has a significant influence on the rotor performance. A previously developed numerical model has been used for this study. The geometry proposed by Setoguchi et al. (2002, “A Performance Study of a Radial Impulse Turbine for Wave Energy Conversion,” Journal of Power and Energy, 216, pp. 15–22) is used in the model. Three different tip clearance sizes have been simulated to compare the influence of the tip clearance size on the performance. Results show that changing the size of the tip clearance from 0% to 4% of the blade span reduces the turbine maximum efficiency by up to 8%. However, the efficiency reduction is more pronounced when the turbine works as an inflow turbine because the tip clearance effect is more important in the inner part of the rotor, since flow velocities are higher and the relative casing motion is lower. This study achieves its main aim, which is to improve knowledge about the phenomena related to the tip clearance and its influence on the performance of radial impulse turbines.


Author(s):  
Manabu Takao ◽  
Eiji Sato ◽  
Shuichi Nagata ◽  
Kazutaka Toyota ◽  
Toshiaki Setoguchi

A sea trial of wave power plant using an impulse turbine with coreless generator has been carried out at Niigata-nishi Port, in order to demonstrate usefulness of the turbine for wave energy conversion. Oscillating water column (OWC) based wave power plant has been installed at the side of a breakwater and has an air chamber with a sectional area of 4 m2 (= 2m × 2m). The impulse turbine used in the sea trial has fixed guide vanes both upstream and downstream, and these geometries are symmetrical with respect to the rotor centerline in order to rotate in a single direction in bi-directional airflow generated by OWC. The turbine is operated at lower rotational speed in comparison with conventional turbines. The rotor has a tip diameter of 458 mm, a hub-to-tip ratio of 0.7, a tip clearance of 1 mm, a chord length of 82.8 mm and a solidity of 2.0. The guide vane with chord length of 107.4 mm is symmetrically installed at the distance of 30.7 mm downstream and upstream of the rotor. The guide vane has a solidity of 2.27, a thickness ratio of 0.0279, a guide vane setting angle of 30° and a camber angle of 60°. The generator is coreless type and can generate electricity at lower rotational speed in comparison with conventional generator. The rated and maximum powers of the generator are 450 W and 880 W respectively. The experimental data obtained in the sea trial of wave power plant with the impulse turbine having coreless generator was compared to these of Wells turbine which is the mainstream of the turbine for wave energy conversion. As a result, total efficiency of the plant using the impulse turbine was higher than that of Wells turbine.


Sign in / Sign up

Export Citation Format

Share Document