tip leakage flow
Recently Published Documents


TOTAL DOCUMENTS

733
(FIVE YEARS 193)

H-INDEX

32
(FIVE YEARS 7)

Author(s):  
Jun Xiong ◽  
Yangli Zhu ◽  
Xing Wang ◽  
Haisheng Chen ◽  
Junfeng Wang

Flow field of shroud leakage flow for a single-stage axial turbine has been investigated in this article. The spiral groove seal (SGS) is adopted for shrouded rotor blade to reduce tip leakage and improve turbine aerodynamic performance. A series of three-dimensional (3D) computational fluid dynamics (CFD) simulations are performed to investigate leakage characteristics and flow mechanism of various configurations with different angle, depth, width, and grooves number of the SGS. The original staggered labyrinth seal (LS) is also calculated for comparison. The results illustrate that small spiral groove angle can create more axial flow resistance; meanwhile, it will increase grooves number existing in the axial direction. Groove depth and tooth width will influence the number, shape, and strength of vortex in the groove. The leakage mass flow can be reduced by 36% and isentropic efficiency of the turbine can be increased by 0.26% when spiral groove angle, depth, and width of the SGS are 1.5°, 1.8 mm, and 0.8 mm, respectively. Overall, the optimal SGS can influence vortex generation and enhance energy dissipation in shroud cavity to reduce the leakage and suppress mixing loss of leakage flow with the main flow to some extent. It can be attributed to the combination of throttling effect and pumping effect of the SGS that realize leakage reduction and efficiency improvement. As a result, the SGS can effectively improve tip leakage flow of shrouded blade in axial turbine.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3575
Author(s):  
Shuo Li ◽  
Wei Li ◽  
Leilei Ji ◽  
Weidong Shi ◽  
Ramesh K. Agarwal

A multi-region dynamic slip method was established to study the internal flow characteristics of the mixed-flow pump under the Alford effect. The ANSYS Fluent software and the standard k-ε two-equation model were used to numerically predict the mixed-flow pump’s external characteristics and analyze the forces on the impeller and guide vane internal vortex structure and non-uniform tip gap of the mixed-flow pump at different eccentric distances. The research results show that the external characteristic results of the numerical calculation are consistent with the experimental measurement. The head error of the design flow operating point is about 5%, and the efficiency error is no more than 3%, indicating the high accuracy of numerical calculation. Eccentricity has a significant influence on the flow field in the tip area of the mixed-flow pump impeller, the distribution of vortex core in the impeller presents obvious asymmetry, the strength and distribution area of the vortex core in the small gap area of the tip increase obviously, which aggravates the flow instability and increases the energy loss. With the increase of eccentricity, the strength and number of vortex core structures in the guide vane also increase significantly, and obvious flow separation occurs near the inlet of the guide vane suction surface on the eccentric side of the impeller. The circumferential distribution of L1 and L2 values represents the friction pressure gap in the eccentric state, and the eccentricity has a more noticeable effect on L1 and L2 values at the small gap; With the increase of eccentricity, the values of vorticity moment components L1 and L2 increase, and the Alford moment on the impeller increases. The leading-edge region of the blade is the main part affected by the unstable torque of the flow field. With the increase of eccentricity, the impact degree of tip leakage flow deepens, and the change of the tip surface pressure is the most obvious. The impact area of tip leakage flow is mainly concentrated in the first half of the impeller channel, which has an impact on the blade inlet flow field but has little impact on the blade outlet flow field.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8369
Author(s):  
Xiangyi Chen ◽  
Björn Koppe ◽  
Martin Lange ◽  
Wuli Chu ◽  
Ronald Mailach

When a compressor is throttled to the near stall point, rotating instability (RI) is often observed as significant increases of amplitude within a narrow frequency band which can be regarded as a pre-stall disturbance. In the current study, a single compressor rotor row with varying blade tip clearance (1.3%, 2.6% and 4.3% chord length) was numerically simulated using the zonal large eddy simulation model. The mesh with six blade passages was selected to capture the proper dynamic feature after being validated in comparison to the measured data, and the dynamic mode decomposition (DMD) approach was applied to the numerical temporal snapshots. In the experimental results, RIs are detected in the configurations with middle and large tip gaps (2.6% and 4.3% chord length), and the corresponding characterized frequencies are about 1/2 and 1/3 of the blade passing frequency, respectively. Simulations provide remarkable performance in capturing the measured flow features, and the DMD modes corresponding to the featured RI frequencies are successfully extracted and then visualized. The analysis of DMD results indicates that RI is essentially a presentation of the pressure wave propagating over the blade tip region. The tip leakage vortex stretches to the front part of the adjacent blade and consequently triggers the flow perturbations (waves). The wave influences the pressure distribution, which, in turn, determines the tip leakage flow and finally forms a loop.


Author(s):  
Ding Nan ◽  
Toru Shigemitsu ◽  
Tomofumi Ikebuchi ◽  
Takeru Ishiguro ◽  
Takuji Hosotani

Renewable energy is strongly recommended to replace the traditional fossil fuels to solve the severe environmental pollution. However, small hydro-turbine performs lower efficiency, and it is also easy to be blocked and impacted. Therefore, the contra-rotating rotors are adopted to overcome the disadvantages of small hydro-turbine. The performance and internal flow condition of contra-rotating small hydro-turbine have been clarified. In this paper, a new transparent casing is manufactured, and pressure fluctuation experiments are conducted. The pressure fluctuation experiments are to clarify the pressure fluctuation during the running of contra-rotating small hydro-turbine. Then the hydraulic stability of contra-rotating small hydro-turbine can be further investigated. According to the experiment results, for the new model, most of the amplitudes of pressure fluctuation are decreased. The maximum decreasing percentage of peak-to-peak value is 74.22%, and it is appeared on the point of Pr3. On frequency domain, the dominant frequencies of pressure fluctuation are rotation frequency and blade passing frequency. The investigation to tip leakage flow of contra-rotating small hydro-turbine is conducted based on the pressure fluctuation experiment and numerical simulation. The tip leakage vortex is identified by Q-criterion. The pressure distributions in tip clearance area show that the tip leakage vortex of new model is suppressed, and this helps to reduce the amplitude of pressure fluctuation in tip clearance area.


2021 ◽  
Author(s):  
Subbaramu Shivaramaiah ◽  
Mahesh K. Varpe

Abstract In the present research work, effect of airfoil vortex generator on performance and stability of transonic compressor stage is investigated through CFD simulations. In turbomachines vortex generators are used to energize boundary and generated vortex is made to interact with tip leakage flow and secondary flow vortices formed in rotor and stator blade passage. In the present numerical investigation symmetrical airfoil vortex generator is placed on rotor casing surface close to leading edge, anticipating that vortex generated will be able to disturb tip leakage flow and its interaction with rotor passage core flow. Six different vortex generator configuration are investigated by varying distance between vortex generator trailing edge and rotor leading edge. Particular vortex generator configuration shows maximum improvement of stall margin and operating range by 5.5% and 76.75% respectively. Presence of vortex generator alters flow blockage by modifying flow field in rotor tip region and hence contributes to enhancement of stall margin. As a negative effect, interaction of vortex generator vortices and casing causes surface friction and high entropy generation. As a result compressor stage pressure ratio and efficiency decreases.


2021 ◽  
Author(s):  
Subbaramu Shivaramaiah ◽  
Mahesh K. Varpe ◽  
Mohammed Afzal

Abstract In a transonic compressor rotor, tip leakage flow interacts with passage shock, casing boundary layer and secondary flow. This leads to increase in total pressure loss and reduction of compressor stability margin. Casing treatment is one of the passive endwall geometry modification technique to control tip leakage flow interaction. In the present investigation effect of rotor tip casing treatment is investigated on performance and stability of a NASA 37 transonic compressor stage. Existing literature reveals, that endwall casing treatment slots i.e., porous casing treatment, axial slots axially skewed slots, circumferential grooves, recirculating casing treatment etc. are able to improve compressor stability margin with penalty on stage efficiency. Turbomachinery engineers and scientists are still focusing their research work to identify an endwall casing treatment configuration with improves both compressor stall margin as well as stage efficiency. Hence in the current work, as an innovative idea, effect of casing treatment slot along rotor tip mean camber line is investigated on NASA 37 compressor stage. Casing treatment slot with rectangular cross-section was created along the rotor tip mean camber line. Four different casing treatment configurations were created by changing number of slots on rotor casing surface. In all four configurations casing treatment slot width and height remains same. Flow simulation of NASA 37 compressor stage was performed with all these four casing treatment configurations. A maximum stall margin improvement of 3% was achieved with a particular slot configuration, but without any increase in compressor stage efficiency.


Sign in / Sign up

Export Citation Format

Share Document