guide vane
Recently Published Documents


TOTAL DOCUMENTS

1588
(FIVE YEARS 401)

H-INDEX

31
(FIVE YEARS 5)

2022 ◽  
Vol 10 (1) ◽  
pp. 115
Author(s):  
Wei Li ◽  
Mingjiang Liu ◽  
Leilei Ji ◽  
Yulu Wang ◽  
Muhammad Awais ◽  
...  

This paper presents the matching characteristics of impellers and guide vanes of high capacity and pressure seawater desalination pumps by using computational fluid dynamics (CFD). The single-stage pump is numerically calculated, and its external characteristics are consistent with the test results of model pump. Taking this scheme as a prototype, the research is carried out from three aspects: (i) the impeller blade outlet width; (ii) the number of impeller and guide vane blades; and (iii) the area ratio of impeller outlet to guide vane inlet. The results indicate that the blade outlet width significantly affects the pump head and efficiency. Appropriately increasing the number of guide vane blades or changing the number of impeller blades can improve efficiency and expand the high-efficiency area. Additionally, increasing the throat area of the guide vane has the opposite effect on the large flow and small flow area of the pump. An optimized hydraulic model design scheme is obtained.


2022 ◽  
Vol 9 ◽  
Author(s):  
Ming Liu ◽  
Lei Tan ◽  
Shuliang Cao

Pump as Turbine (PAT) is a technically and economically effective technology to utilize small/mini/micro/pico hydropower, especially in rural areas. There are two main subjects that influence the selection and application of PAT. On the one hand, manufacturers of pumps will not provide their characteristics under the turbine mode, which requires performance prediction methods. On the other hand, PAT efficiency is always slightly lower than that of pump, which requires further geometry optimization. This literature review summarized published research studies related to performance prediction and geometry optimization, aimed at guiding for selection and optimization of PAT. Currently, there exist four categories of performance prediction methods, namely, using BEP (Best Efficiency Point), using specific speed, loss modeling, and polynomial fitting. The using BEP and loss modeling methods are based on theoretical analysis, while using specific speed and polynomial fitting methods require statistical fitting. The prediction errors of published methods are within ±10% mostly. For geometry optimization, investigations mainly focus on impeller diameter and blade geometry. The influence of impeller trimming, blade rounding, blade wrap angle, blade profile, blade number, blade trailing edge position, and guide vane number has been studied. Among published methods, the blade rounding and forward-curved impellers are the most effective and feasible techniques.


2022 ◽  
pp. 107754632110623
Author(s):  
Xianzhong Wang ◽  
Ning Li ◽  
Min Yu ◽  
Hongzhou Lin ◽  
Lili Ye

In this paper, the pipeline with guide vanes was taken as the research object, the flow noise was studied based on the hybrid calculation method, then the acoustic-structure coupling method was introduced to study the vibration and radiation noise, and then explored the best position of the guide vanes. Based on the pipeline experimental platform and improved experimental methods, it was found that the guide vanes had a better noise reduction effect on the elbows; based on that, a simulation study was carried out on the elbow with guide vanes, and the mechanism of the guide vanes on the velocity field and pulsating pressure of the pipeline was explored. Finally, the noise reduction effect at different positions of the guide vanes under different flow speeds was studied. The results indicated that the guide vane at the middle of the elbow had the best effect on improving the flow field and reducing noise in the working conditions studied in this article, providing a calculation basis for the design of the guide vane.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 287
Author(s):  
Jin Hang ◽  
Jingzhou Zhang ◽  
Chunhua Wang ◽  
Yong Shan

Single-row double-jet film cooling (DJFC) of a turbine guide vane is numerically investigated in the present study, under a realistic aero-thermal condition. The double-jet units are positioned at specific locations, with 57% axial chord length (Cx) on the suction side or 28% Cx on the pressure side with respect to the leading edge of the guide vane. Three spanwise spacings (Z) in double-jet unit (Z = 0, 0.5d, and 1.0d, here d is the film hole diameter) and four spanwise injection angles (β = 11°, 17°, 23°, and 29°) are considered in the layout design of double jets. The results show that the layout of double jets affects the coupling of adjacent jets and thus subsequently changes the jet-in-crossflow dynamics. Relative to the spanwise injection angle, the spanwise spacing in a double-jet unit is a more important geometric parameter that affects the jet-in-crossflow dynamics in the downstream flowfield. With the increase in the spanwise injection angle and spanwise spacing in the double-jet unit, the film cooling effectiveness is generally improved. On the suction surface, DJFC does not show any benefit on film cooling improvement under smaller blowing ratios. Only under larger blowing ratios does its positive potential for film cooling enhancement start to show. Compared to the suction surface, the positive potential of the DJFC on enhancing film cooling effectiveness behaves more obviously on the pressure surface. In particular, under large blowing ratios, the DJFC plays dual roles in suppressing jet detachment and broadening the coolant jet spread in a spanwise direction. With regard to the DJFC on the suction surface, its main role in film cooling enhancement relies on the improvement of the spanwise film layer coverage on the film-cooled surface.


Author(s):  
Chao Liu ◽  
Hongxun Chen ◽  
Zheng Ma

Waterjet propulsion has many advantages when operating at high-speed conditions. As a special way of navigation, it is mostly used in high-speed ships and shallow draft ships. In this paper, a mixed-flow waterjet pump was taken as the research object. For the two cases of non-uniform inflow and uniform inflow, a modified RANS/LES method was adopted for unsteady calculation of the whole channel, aiming at investigating the influence mechanism of the non-uniform inflow on the energy performance and pressure pulsation characteristics of the waterjet pump. The hydrodynamic characteristics of the waterjet pump were comprehensively analyzed such as head, efficiency, axial-force, internal flow and pressure pulsation. It is found that the non-uniform inflow will reduce the external characteristics of the waterjet pump and lead to the huge fluctuation of energy performance with time. Low-speed swirls occur locally in the intake duct for non-uniform inflow, in which condition the vorticity is much higher than that for uniform inflow. In terms of the low-speed area, [Formula: see text] and [Formula: see text], the values under non-uniform inflow condition are generally larger than those under uniform flow condition when in the impeller and guide vane zone. The dominant frequencies of pressure pulsation are, respectively, [Formula: see text], 7[Formula: see text] and 4[Formula: see text] in the intake duct, impeller and diffuser, which are almost consitent for the two cases. However, the frequency features are more diverse, and the amplitudes corresponding to the same frequencies are more intense for non-uniform inflow.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 64
Author(s):  
Jie Kou ◽  
Zhaoyang Li

At present, most of the incoming liquids from the oilfield combined stations are not pre-separated for natural gas, which makes the subsequent process of oil-water separation less effective. Therefore, it is necessary to carry out gas-liquid separation. A new type of axial flow gas-liquid separator was proposed in this paper. The numerical simulation was carried out by CFD FLUENT software, and the changes of concentration field, velocity field and pressure field in the axial flow gas-liquid separator were analyzed. It was found that there were gas-liquid separation developments and stabilization segments in the inner cylinder of the separator. The axial velocity will form a zero-speed envelope in the inner cylinder, and the direction of the velocity in front of and behind the zero-speed envelope was opposite. The tangential velocity showed a “W” shape distribution in the radial position of the inner cylinder. The pressure on the left wall of the guide vane was higher than that on the right side. Therefore, the left wall was more likely to be damaged than the right wall.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 8
Author(s):  
Cristian Cruzatty ◽  
Darwin Jimenez ◽  
Esteban Valencia ◽  
Ivan Zambrano ◽  
Christian Mora ◽  
...  

The operation of various types of turbomachines is importantly affected by sediment erosion. Francis turbines used for power generation typically suffer said effects due to the fact that they are used in sediment-laden rivers and are usually operated disregarding the long-term effect of the erosion on turbine performance. This investigation seeks to study the erosion rate for the main components of the turbines located at San Francisco hydropower plant in Pastaza, Ecuador. A sediment characterization study was performed in order to determine the properties of the particles present in Pastaza River and accurately predict their effect on the turbine flow passages. A numerical approach combining liquid–solid two-phase flow simulation and an erosion model was used to analyze the erosion rates at different operating conditions and determine wear patterns in the components. As expected, the results indicated that an increase in the erosion rate was obtained for higher intake flows. However, a dramatic increase in the erosion rate was observed when the turbine was operated at near-full-load conditions, specifically when guide vane opening exceeded a 90% aperture.


Sign in / Sign up

Export Citation Format

Share Document