scholarly journals Viscous Shear Flow Past a Semielliptic Projection Attached to a Plane Wall

1975 ◽  
Vol 41 (346) ◽  
pp. 1838-1845
Author(s):  
Masaru KIYA ◽  
Mikio ARIE
1975 ◽  
Vol 69 (4) ◽  
pp. 803-823 ◽  
Author(s):  
Masaru Kiya ◽  
Mikio Arie

Numerical solutions of the Navier-Stokes equations are presented for two-dimensional viscous flow past semicircular and semielliptical projections attached to a plane wall on which a laminar boundary layer has developed. Since the major axis is in the direction normal to the wall and is chosen to be twenty times as long as the minor axis in the present case, the flow around the semielliptical projection will approximately correspond to that around a normal flat plate. It is assumed that the height of each obstacle is so small in comparison with the local boundary-layer thickness that the approaching flow can be approximated by a uniform shear flow. Numerical solutions are obtained for the range 0·1-100 of the Reynolds number, which is defined in terms of the undisturbed approaching velocity at the top of the obstacle and its height. The geometrical shapes of the front and rear standing vortices, the drag coefficients and the pressure and shear-stress distributions are presented as functions of the Reynolds number. The computed results are discussed in connexion with the data already obtained in the other theoretical solutions and an experimental observation.


1980 ◽  
Vol 23 (186) ◽  
pp. 1952-1958 ◽  
Author(s):  
Hisataka TAMURA ◽  
Masaru KIYA ◽  
Mikio ARIE

1960 ◽  
Vol 7 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Alar Toomre

A simple method is presented in this paper for calculating the secondary velocities, andthe lateral displacement of total pressure surfaces (i.e. the ‘displacement effect’) in the plane of symmetry ahead of an infinitely long cylinder situated normal to a steady, incompressible, slightly viscous shear flow; the cylinder is also perpendicular to the vorticity, which is assumed uniform but small. The method is based on lateral gradients of pressure, these being calculated from the primary flow alone. Profiles of the secondary velocities are obtained at several Reynolds numbers ahead of two specific cylindrical shapes: a circular cylinder, and a flat plate normal to the flow. The displacement effect is derived and, rathe surprisingly, is found to be virtually independent of the Reynolds number.


2010 ◽  
Vol 132 (8) ◽  
Author(s):  
C. Y. Wang

A viscous shear flow moves parallel to a wavy plate. Partial slip occurs on the wavy surface. The problem is solved by perturbation about a small amplitude parameter, namely, the amplitude to wavelength ratio. It is found that the interaction of waviness and slip decreases the apparent slip coefficient.


Sign in / Sign up

Export Citation Format

Share Document