Viscous shear flow past small bluff bodies attached to a plane wall

1975 ◽  
Vol 69 (4) ◽  
pp. 803-823 ◽  
Author(s):  
Masaru Kiya ◽  
Mikio Arie

Numerical solutions of the Navier-Stokes equations are presented for two-dimensional viscous flow past semicircular and semielliptical projections attached to a plane wall on which a laminar boundary layer has developed. Since the major axis is in the direction normal to the wall and is chosen to be twenty times as long as the minor axis in the present case, the flow around the semielliptical projection will approximately correspond to that around a normal flat plate. It is assumed that the height of each obstacle is so small in comparison with the local boundary-layer thickness that the approaching flow can be approximated by a uniform shear flow. Numerical solutions are obtained for the range 0·1-100 of the Reynolds number, which is defined in terms of the undisturbed approaching velocity at the top of the obstacle and its height. The geometrical shapes of the front and rear standing vortices, the drag coefficients and the pressure and shear-stress distributions are presented as functions of the Reynolds number. The computed results are discussed in connexion with the data already obtained in the other theoretical solutions and an experimental observation.

1985 ◽  
Vol 160 ◽  
pp. 281-295 ◽  
Author(s):  
F. A. Milinazzo ◽  
P. G. Saffman

Computations of two-dimensional solutions of the Navier–Stokes equations are carried out for finite-amplitude waves on steady unidirectional flow. Several cases are considered. The numerical method employs pseudospectral techniques in the streamwise direction and finite differences on a stretched grid in the transverse direction, with matching to asymptotic solutions when unbounded. Earlier results for Poiseuille flow in a channel are re-obtained, except that attention is drawn to the dependence of the minimum Reynolds number on the physical constraint of constant flux or constant pressure gradient. Attempts to calculate waves in Couette flow by continuation in the velocity of a channel wall fail. The asymptotic suction boundary layer is shown to possess finite-amplitude waves at Reynolds numbers orders of magnitude less than the critical Reynolds number for linear instability. Waves in the Blasius boundary layer and unsteady Rayleigh profile are calculated by employing the artifice of adding a body force to cancel the spatial or temporal growth. The results are verified by comparison with perturbation analysis in the vicinity of the linear-instability critical Reynolds numbers.


2000 ◽  
Vol 411 ◽  
pp. 213-232 ◽  
Author(s):  
E. V. BULDAKOV ◽  
S. I. CHERNYSHENKO ◽  
A. I. RUBAN

The subject of this study is a steady two-dimensional incompressible flow past a rapidly rotating cylinder with suction. The rotation velocity is assumed to be large enough compared with the cross-flow velocity at infinity to ensure that there is no separation. High-Reynolds-number asymptotic analysis of incompressible Navier–Stokes equations is performed. Prandtl's classical approach of subdividing the flow field into two regions, the outer inviscid region and the boundary layer, was used earlier by Glauert (1957) for analysis of a similar flow without suction. Glauert found that the periodicity of the boundary layer allows the velocity circulation around the cylinder to be found uniquely. In the present study it is shown that the periodicity condition does not give a unique solution for suction velocity much greater than 1/Re. It is found that these non-unique solutions correspond to different exponentially small upstream vorticity levels, which cannot be distinguished from zero when considering terms of only a few powers in a large Reynolds number asymptotic expansion. Unique solutions are constructed for suction of order unity, 1/Re, and 1/√Re. In the last case an explicit analysis of the distribution of exponentially small vorticity outside the boundary layer was carried out.


2013 ◽  
Vol 732 ◽  
pp. 616-659 ◽  
Author(s):  
Ming Dong ◽  
Xuesong Wu

AbstractSmall-amplitude perturbations are governed by the linearized Navier–Stokes equations, which are, for a parallel or nearly parallel shear flow, customarily reduced to the Orr–Sommerfeld (O-S) and Squire equations. In this paper, we consider continuous spectra (CS) of the O-S and Squire operators for the Blasius and asymptotic suction boundary layers, and address the issue of whether and when continuous modes can represent free-stream vortical disturbances and their entrainment into the shear layer. For the Blasius boundary layer, we highlight two particular properties of the CS: (i) the eigenfunction of a continuous mode simultaneously consists of two components with wall-normal wavenumbers $\pm {k}_{2} $, a phenomenon which we refer to as ‘entanglement of Fourier components’; and (ii) for low-frequency disturbances the presence of the boundary layer forces the streamwise velocity in the free stream to take a much larger amplitude than those of the transverse velocities. Both features appear to be non-physical, and cast some doubt about the appropriateness of using CS to characterize free-stream vortical disturbances and their entrainment into the boundary layer, a practice that has been adopted in some recent studies of bypass transition. A high-Reynolds-number asymptotic description of continuous modes and entrainment is present, and it shows that the entanglement is a result of neglecting non-parallelism, which has a leading-order effect on the entrainment. When this effect is included, entanglement disappears, and moreover the streamwise velocity is significantly amplified in the edge layer when ${R}^{- 1} \ll \omega \ll 1$, where $R$ is the Reynolds number based on the local boundary-layer thickness. For the asymptotic suction boundary layer, which is an exactly parallel flow, both temporal and spatial CS may be defined mathematically. However, at a finite $R$ neither of them represents the physical process of free-stream vortical disturbances penetrating into the boundary layer. The latter must instead be characterized by a peculiar type of continuous modes whose eigenfunctions increase exponentially with the distance from the wall. In the limit $R\gg 1$, all three types of CS are identical at leading order, and hence can be used to represent free-stream vortical disturbances and their entrainment. Low-frequency disturbances are found to generate a large-amplitude streamwise velocity in the boundary layer, which is reminiscent of longitudinal streaks.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 191
Author(s):  
Naser Hamedi ◽  
Lars-Göran Westerberg

In the present study, the flow of a fibre suspension in a channel containing a cylinder was numerically studied for a very low Reynolds number. Further, the model was validated against previous studies by observing the flexible fibres in the shear flow. The model was employed to simulate the rigid, semi-flexible, and fully flexible fibre particle in the flow past a single cylinder. Two different fibre lengths with various flexibilities were applied in the simulations, while the initial orientation angle to the flow direction was changed between 45° ≤ θ ≤ 75°. It was shown that the influence of the fibre orientation was more significant for the larger orientation angle. The results highlighted the influence of several factors affecting the fibre particle in the flow past the cylinder.


2013 ◽  
Vol 736 ◽  
pp. 414-443 ◽  
Author(s):  
Y. Ueda ◽  
T. Kida ◽  
M. Iguchi

AbstractThe long-time viscous flow about two identical rotating circular cylinders in a side-by-side arrangement is investigated using an adaptive numerical scheme based on the vortex method. The Stokes solution of the steady flow about the two-cylinder cluster produces a uniform stream in the far field, which is the so-called Jeffery’s paradox. The present work first addresses the validation of the vortex method for a low-Reynolds-number computation. The unsteady flow past an abruptly started purely rotating circular cylinder is therefore computed and compared with an exact solution to the Navier–Stokes equations. The steady state is then found to be obtained for $t\gg 1$ with ${\mathit{Re}}_{\omega } {r}^{2} \ll t$, where the characteristic length and velocity are respectively normalized with the radius ${a}_{1} $ of the circular cylinder and the circumferential velocity ${\Omega }_{1} {a}_{1} $. Then, the influence of the Reynolds number ${\mathit{Re}}_{\omega } = { a}_{1}^{2} {\Omega }_{1} / \nu $ about the two-cylinder cluster is investigated in the range $0. 125\leqslant {\mathit{Re}}_{\omega } \leqslant 40$. The convection influence forms a pair of circulations (called self-induced closed streamlines) ahead of the cylinders to alter the symmetry of the streamline whereas the low-Reynolds-number computation (${\mathit{Re}}_{\omega } = 0. 125$) reaches the steady regime in a proper inner domain. The self-induced closed streamline is formed at far field due to the boundary condition being zero at infinity. When the two-cylinder cluster is immersed in a uniform flow, which is equivalent to Jeffery’s solution, the streamline behaves like excellent Jeffery’s flow at ${\mathit{Re}}_{\omega } = 1. 25$ (although the drag force is almost zero). On the other hand, the influence of the gap spacing between the cylinders is also investigated and it is shown that there are two kinds of flow regimes including Jeffery’s flow. At a proper distance from the cylinders, the self-induced far-field velocity, which is almost equivalent to Jeffery’s solution, is successfully observed in a two-cylinder arrangement.


2014 ◽  
Vol 752 ◽  
pp. 602-625 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

AbstractOur concern in this paper is with high-Reynolds-number nonlinear equilibrium solutions of the Navier–Stokes equations for boundary-layer flows. Here we consider the asymptotic suction boundary layer (ASBL) which we take as a prototype parallel boundary layer. Solutions of the equations of motion are obtained using a homotopy continuation from two known types of solutions for plane Couette flow. At high Reynolds numbers, it is shown that the first type of solution takes the form of a vortex–wave interaction (VWI) state, see Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666), and is located in the main part of the boundary layer. On the other hand, here the second type is found to support an equilibrium solution of the unit-Reynolds-number Navier–Stokes equations in a layer located a distance of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}O(\ln \mathit{Re})$ from the wall. Here $\mathit{Re}$ is the Reynolds number based on the free-stream speed and the unperturbed boundary-layer thickness. The streaky field produced by the interaction grows exponentially below the layer and takes its maximum size within the unperturbed boundary layer. The results suggest the possibility of two distinct types of streaky coherent structures existing, possibly simultaneously, in disturbed boundary layers.


Sign in / Sign up

Export Citation Format

Share Document