scholarly journals Asymmetrical Transient Thermoplastic Problems in Composite Hollow Circular Cylinder

1978 ◽  
Vol 44 (386) ◽  
pp. 3386-3394
Author(s):  
Yoitiro TAKEUTI ◽  
Yoshinobu TANIGAWA
1999 ◽  
Vol 66 (3) ◽  
pp. 598-606 ◽  
Author(s):  
Xiangzhou Zhang ◽  
Norio Hasebe

An exact elasticity solution is developed for a radially nonhomogeneous hollow circular cylinder of exponential Young’s modulus and constant Poisson’s ratio. In the solution, the cylinder is first approximated by a piecewise homogeneous one, of the same overall dimension and composed of perfectly bonded constituent homogeneous hollow circular cylinders. For each of the constituent cylinders, the solution can be obtained from the theory of homogeneous elasticity in terms of several constants. In the limit case when the number of the constituent cylinders becomes unboundedly large and their thickness tends to infinitesimally small, the piecewise homogeneous hollow circular cylinder reverts to the original nonhomogeneous one, and the constants contained in the solutions for the constituent cylinders turn into continuous functions. These functions, governed by some systems of first-order ordinary differential equations with variable coefficients, stand for the exact elasticity solution of the nonhomogeneous cylinder. Rigorous and explicit solutions are worked out for the ordinary differential equation systems, and used to generate a number of numerical results. It is indicated in the discussion that the developed method can also be applied to hollow circular cylinders with arbitrary, continuous radial nonhomogeneity.


2018 ◽  
Vol 172 ◽  
pp. 02004
Author(s):  
Prateek Kumar Sahu ◽  
Nisha Netam ◽  
Lal Chandra Shah

Two-phase materials are commonly used in engineering application because of its various properties like strength, thermal conductivity, durability and toughness etc. Effective thermal conductivity (ETC) of two-phase material is the fundamental property to predict its thermal performance. Various geometry (spheres, cylinders, irregular particles) have been considered by researchers for calculating ETC of two-phase materials. Due to complex structure, hollow circular cylinder geometry is not reported yet. In this paper, two-dimensional periodic two-phase system, with hollow circular cylinder shape is considered for calculating ETC. In present work unit cell approach method is used to derive collocated parameters model for estimation of ETC. Hollow circular cylinder model with Ψ = 0.2 gives good result for estimating ETC with average percentage error of 6.46%.


1975 ◽  
Vol 11 (11) ◽  
pp. 1144-1149
Author(s):  
D. V. Grilitskii ◽  
A. P. Poddubnyak

2018 ◽  
Vol 130 ◽  
pp. 230-241 ◽  
Author(s):  
Sumit Kumar Singh ◽  
Manoj Kumar ◽  
Alok Kumar ◽  
Abhishek Gautam ◽  
Sunil Chamoli

Sign in / Sign up

Export Citation Format

Share Document