scholarly journals Measurement of the Residual Stress Distribution of SUS316L Stainless Steel Using an Eddy Current Method

2012 ◽  
Vol 78 (789) ◽  
pp. 656-659
Author(s):  
Yuichi SEKINE ◽  
Hitoshi SOYAMA
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
César A. Vázquez Jiménez ◽  
Vignaud Granados Alejo ◽  
Carlos Rubio González ◽  
Gilberto Gómez Rosas ◽  
Sergio Llamas Zamorano

Two different stress raiser geometries (fillets and notched) were treated by laser shock peening (LSP) in order to analyze the effect of sample geometry on fatigue behavior of 2205 duplex stainless steel (DSS). The LSP treatment was carried through Nd : YAG pulsed laser with 1064 nm wavelength, 10 Hz frequency, and 0.85 J/pulse. Experimental and MEF simulation results of residual stress distribution after LSP were assessed by hole drilling method and ABAQUS/EXPLICIT software, respectively. The fatigue tests (tensile-tensile axial stress) were realized with stress ratio of R = 0.1 and 20 Hz. A good comparison of residual stress simulation and experimental data was observed. The results reveal that the fatigue life is increased by LSP treatment in the notched samples, while it decreases in the fillet samples. This is related to the residual stress distribution after LSP that is generated in each geometry type. In addition, the fatigue crack growth direction is changed according to geometry type. Both the propagation direction of fatigue crack and the anisotropy of this steel results detrimental in fillet samples, decreasing the number of cycles to the fatigue crack initiation. It is demonstrated that the LSP effect on fatigue performance is influenced by the specimen geometry.


2009 ◽  
Vol 27 (2) ◽  
pp. 240s-244s ◽  
Author(s):  
Akira MAEKAWA ◽  
Michiyasu NODA ◽  
Shigeru TAKAHASHI ◽  
Toru OUMAYA ◽  
Hisashi SERIZAWA ◽  
...  

2014 ◽  
Vol 783-786 ◽  
pp. 2316-2321
Author(s):  
Hiroshi Kawakami ◽  
Akiyoshi Kondo ◽  
Muneharu Kutsuna ◽  
Kiyotaka Saito ◽  
Hiroki Inoue ◽  
...  

Indirect laser peening applied to the substrate of austenitic stainless steel with the sheet of similar material. Effects of indirect laser peening condition on the formation of the dimple and the residual stress were investigated in this paper. Shape of the dimple and distribution of the residual stress were measured by laser microscope and X-ray diffraction, respectively. It was observed by the microscope that clean substrate surface of as-received state kept after indirect laser peening because of protection by the sheet. However, fracture of sheet occurred slightly in high pulse energy condition. The diameter and the depth of the dimple by indirect laser peening increased with the increase of laser power. Efficiency of dimple formation decreased with the increase of pulse energy. Affective condition region of indirect laser peening with a combination between the substrate and the sheet of austenitic stainless steel may be limited below the laser power density of 10GW/cm2. It was confirmed that indirect laser peening induced compressive residual stress in the substrate. One of peak of compressive residual stress in residual stress distribution existed near the bottom of the dimple. Residual stress distribution which was produced by indirect laser peening may affect change of quasi bending modulus which was obtained by three-point bending test.


Sign in / Sign up

Export Citation Format

Share Document