scholarly journals Effect of Cross-Sectional Aspect Ratio on Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Duct.

1998 ◽  
Vol 64 (627) ◽  
pp. 3781-3787
Author(s):  
Akira MURATA ◽  
Sadanari MOCHIZUKI
Author(s):  
Hang Seok Choi ◽  
Tae Seon Park

The turbulent flow fields of a parallel plate or channel with spatially periodic condition have been widely investigated by many researchers. However the rectangular or square curved duct flow has not been fundamentally scrutinized in spite of its engineering significance, especially for cooling device. Hence, in the present study large eddy simulation is applied to the turbulent flow and heat transfer in a rectangular duct with 180° curved angle varying its aspect ratio. The turbulent flow and the thermal fields are calculated and the representative vortical motions generated by the secondary flow are investigated. From the results, the secondary flow has a great effect on the heat and momentum transport in the flow. With changing the aspect ratio, the effect of the geometrical variation to the secondary flow and its influence on the turbulent characteristics of the flow and heat transfer are studied.


2018 ◽  
Vol 860 ◽  
pp. 258-299 ◽  
Author(s):  
Thomas Kaller ◽  
Vito Pasquariello ◽  
Stefan Hickel ◽  
Nikolaus A. Adams

We present well-resolved large-eddy simulations of turbulent flow through a straight, high aspect ratio cooling duct operated with water at a bulk Reynolds number of $Re_{b}=110\times 10^{3}$ and an average Nusselt number of $Nu_{xz}=371$. The geometry and boundary conditions follow an experimental reference case and good agreement with the experimental results is achieved. The current investigation focuses on the influence of asymmetric wall heating on the duct flow field, specifically on the interaction of turbulence-induced secondary flow and turbulent heat transfer, and the associated spatial development of the thermal boundary layer and the inferred viscosity variation. The viscosity reduction towards the heated wall causes a decrease in turbulent mixing, turbulent length scales and turbulence anisotropy as well as a weakening of turbulent ejections. Overall, the secondary flow strength becomes increasingly less intense along the length of the spatially resolved heated duct as compared to an adiabatic duct. Furthermore, we show that the assumption of a constant turbulent Prandtl number is invalid for turbulent heat transfer in an asymmetrically heated duct.


1983 ◽  
Vol 105 (3) ◽  
pp. 527-535 ◽  
Author(s):  
E. M. Sparrow ◽  
N. Cur

The effects of flow maldistribution caused by partial blockage of the inlet of a flat rectangular duct were studied experimentally. Local heat transfer coefficients were measured on the principal walls of the duct for two blockages and for Reynolds numbers spanning the range between 6000 and 30,000. Measurements were also made of the pressure distribution along the duct, and the fluid flow pattern was visualized by the oil-lampblack technique. Large spanwise nonuniformities of the local heat transfer coefficient were induced by the maldistributed flow. These nonuniformities persisted to far downstream locations, especially in the presence of severe inlet flow maldistributions. Spanwise-average heat transfer coefficients, evaluated from the local data, were found to be enhanced in the downstream portion of the duct due to the flow maldistribution. However, at more upstream locations, where the entering flow reattached to the duct wall following its separation at the sharp-edged inlet, the average coefficients were reduced by the presence of the maldistribution.


Sign in / Sign up

Export Citation Format

Share Document