The Characteristics of Turbulent Heat Transfer in a Curved Rectangular Duct With Various Aspect Ratios

Author(s):  
Hang Seok Choi ◽  
Tae Seon Park

The turbulent flow fields of a parallel plate or channel with spatially periodic condition have been widely investigated by many researchers. However the rectangular or square curved duct flow has not been fundamentally scrutinized in spite of its engineering significance, especially for cooling device. Hence, in the present study large eddy simulation is applied to the turbulent flow and heat transfer in a rectangular duct with 180° curved angle varying its aspect ratio. The turbulent flow and the thermal fields are calculated and the representative vortical motions generated by the secondary flow are investigated. From the results, the secondary flow has a great effect on the heat and momentum transport in the flow. With changing the aspect ratio, the effect of the geometrical variation to the secondary flow and its influence on the turbulent characteristics of the flow and heat transfer are studied.

2018 ◽  
Vol 860 ◽  
pp. 258-299 ◽  
Author(s):  
Thomas Kaller ◽  
Vito Pasquariello ◽  
Stefan Hickel ◽  
Nikolaus A. Adams

We present well-resolved large-eddy simulations of turbulent flow through a straight, high aspect ratio cooling duct operated with water at a bulk Reynolds number of $Re_{b}=110\times 10^{3}$ and an average Nusselt number of $Nu_{xz}=371$. The geometry and boundary conditions follow an experimental reference case and good agreement with the experimental results is achieved. The current investigation focuses on the influence of asymmetric wall heating on the duct flow field, specifically on the interaction of turbulence-induced secondary flow and turbulent heat transfer, and the associated spatial development of the thermal boundary layer and the inferred viscosity variation. The viscosity reduction towards the heated wall causes a decrease in turbulent mixing, turbulent length scales and turbulence anisotropy as well as a weakening of turbulent ejections. Overall, the secondary flow strength becomes increasingly less intense along the length of the spatially resolved heated duct as compared to an adiabatic duct. Furthermore, we show that the assumption of a constant turbulent Prandtl number is invalid for turbulent heat transfer in an asymmetrically heated duct.


2010 ◽  
Vol 655 ◽  
pp. 152-173 ◽  
Author(s):  
J. BAILON-CUBA ◽  
M. S. EMRAN ◽  
J. SCHUMACHER

The heat transport and corresponding changes in the large-scale circulation (LSC) in turbulent Rayleigh–Bénard convection are studied by means of three-dimensional direct numerical simulations as a function of the aspect ratio Γ of a closed cylindrical cell and the Rayleigh number Ra. The Prandtl number is Pr = 0.7 throughout the study. The aspect ratio Γ is varied between 0.5 and 12 for a Rayleigh number range between 107 and 109. The Nusselt number Nu is the dimensionless measure of the global turbulent heat transfer. For small and moderate aspect ratios, the global heat transfer law Nu = A × Raβ shows a power law dependence of both fit coefficients A and β on the aspect ratio. A minimum of Nu(Γ) is found at Γ ≈ 2.5 and Γ ≈ 2.25 for Ra = 107 and Ra = 108, respectively. This is the point where the LSC undergoes a transition from a single-roll to a double-roll pattern. With increasing aspect ratio, we detect complex multi-roll LSC configurations in the convection cell. For larger aspect ratios Γ ≳ 8, our data indicate that the heat transfer becomes independent of the aspect ratio of the cylindrical cell. The aspect ratio dependence of the turbulent heat transfer for small and moderate Γ is in line with a varying amount of energy contained in the LSC, as quantified by the Karhunen–Loève or proper orthogonal decomposition (POD) analysis of the turbulent convection field. The POD analysis is conducted here by the snapshot method for at least 100 independent realizations of the turbulent fields. The primary POD mode, which replicates the time-averaged LSC patterns, transports about 50% of the global heat for Γ ≥ 1. The snapshot analysis enables a systematic disentanglement of the contributions of POD modes to the global turbulent heat transfer. Although the smallest scale – the Kolmogorov scale ηK – and the largest scale – the cell height H – are widely separated in a turbulent flow field, the LSC patterns in fully turbulent fields exhibit strikingly similar texture to those in the weakly nonlinear regime right above the onset of convection. Pentagonal or hexagonal circulation cells are observed preferentially if the aspect ratio is sufficiently large (Γ ≳ 8).


Author(s):  
B. Zheng ◽  
C. X. Lin ◽  
M. A. Ebadian

Numerical simulations are performed to investigate the developing turbulent flow and heat transfer characteristics of water near the critical point in a curved pipe. The Reynolds stress model is employed to simulate the turbulent flow and heat transfer in a curved pipe at a constant wall temperature with or without buoyancy force effect. Due to the great variation in physical properties of water near the critical point, the turbulent heat transfer can be significantly altered as compared with the pure force convection in the curved pipe. This study explores the influence of the near-critical pressure on the development of fluid flow and heat transfer along the pipe. Based on the results of this research, the development of velocity, temperature, and heat transfer coefficient along the pipe are presented graphically and analyzed.


Author(s):  
Sassan Etemad ◽  
Bengt Sunde´n

The turbulent flow in rectangular-sectioned U-bend ducts with bend mid-line radius 3.35 and with aspect-ratios AR=0.5, 1, 2, and 4 were explored using linear and non-linear high- and low-Re k-ε turbulence models at a Reynolds number of 56000. The impact of the cross-section aspect ratio on the flow field and the associated thermal field was studied. Experimental data were found [1–3] for the square-sectioned cross section (AR=1) and this case was chosen as the reference case for comparison and validation with experimental data. The other cases were evaluated in relation to the square-sectioned case. The predicted data for AR=1 agreed well with the experimental data. The velocity profile upstream the bend has fundamental influence on the strength of the secondary flow and heat transfer. Complex secondary motion was detected for all cases but in particular for AR=1. The mixing process due to the secondary flow decreased in general with increasing aspect ratio.


Author(s):  
Liu Wenhua ◽  
Mo Yang ◽  
Li Ling ◽  
Qiao Liang ◽  
Yuwen Zhang

Turbulent flow and heat transfer in rectangular channel has an important significance in engineering. Conventional approach to caculate Nusselt number of rectangular channel approximately is to take the equivalent diameter as the characteristic length and use the classic circular channel turbulent heat transfer coefficient correlations. However, under these conditions, the caculation error of Nusselt number can reach to 14% and thus this approach can not substantially describe the variation of Nusselt number of rectangular cross-sections with different aspect ratios. Therefore, caculation by using equivalent diameter as the characteristic length in classic experiment formula needs to be corrected. Seven groups of rectangular channel models with different aspect ratios have been studied numerically in this paper. By using standard turbulence model, the flow and heat transfer law of air with varing properties has been studied in 4 different sets of conditions in Reynolds number. The simulation and experimental results are in good agreement. The simulation results show that with the increase of aspect ratio, the cross-sectional average Nusselt number increased, Nusselt number of circumferential wall distributed more evenly and the difference between the infinite plate channel and square channel went up to 25%. The effects of corner region and long\short sides on heat transfer have also been investigated in this paper. Results show that in rectangular channel, heat transfer in corner region is significantly weaker than it in other region. With the increase of aspect ratio, effect on the long side of heat transfer of the short side is gradually reduced, and then eventually eliminates completely in the infinite flat place. Based on the studies above, correction coefficient for rectangular channels with different aspect ratios has been proposed in this paper and the accuracy of the correction coefficient has been varified by numerical simulations. This can reflect the variation of Nusselt number under different aspect ratios more effectively and thus has current significance for project to calculate Nusselt number of heat transfer in rectangular channel.


Author(s):  
A. K. Saha ◽  
Sumanta Acharya

The flow and heat transfer in ribbed coolant passages of aspect ratios (AR) of 1:1, 4:1, and 1:4 are numerically studied through the solution of the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations. The ribs are oriented normal to the flow and arranged in a staggered configuration on the leading and trailing surfaces. The URANS procedure can resolve large-scale bulk unsteadiness, and utilizes a two equation k-ε model for the turbulent stresses. Both Coriolis and centrifugal buoyancy effects are included in the simulations. The computations are carried out for a fixed Reynolds number of 25000 and density ratio of 0.13 while the Rotation number has been varied between 0.12–0.50. The average duct heat transfer is the highest for the 4:1 AR case. For this case, the secondary flow structures consist of multiple roll cells that direct flow both to the trailing and leading surfaces. The 1:4 AR duct shows flow reversal along the leading surface at high rotation numbers with multiple rolls in the secondary flow structures near the leading wall. For this AR, the potential for conduction-limited heat transfer along the leading surface is identified. At high rotation number, both the 1:1 and 4:1 AR cases exhibit loss of axial periodicity over one inter-rib module. The friction factor reveals an increase with the rotation number for all aspect ratio ducts, and shows a sudden jump in its value at a critical rotation number because of either loss of spatial periodicity or the onset of backflow.


Sign in / Sign up

Export Citation Format

Share Document