scholarly journals Wind Characteristics and Wind Models for Wind Turbine Design in Japan (2nd Report, Analysis of Measured Data Obtained by Ultrasonic Anemometers and Cup Anemometers)

2007 ◽  
Vol 73 (733) ◽  
pp. 1853-1859
Author(s):  
Tetsuya KOGAKI ◽  
Hikaru MATSUMIYA ◽  
Hiroyuki ABE ◽  
Susumu OGAWA
2009 ◽  
Vol 4 (3) ◽  
pp. 479-489
Author(s):  
Tetsuya KOGAKI ◽  
Hikaru MATSUMIYA ◽  
Hiroyuki ABE ◽  
Susumu OGAWA

1987 ◽  
Vol 109 (4) ◽  
pp. 321-329 ◽  
Author(s):  
J. R. Connell ◽  
R. L. George

The turbulence encountered by a point on a rotating wind turbine blade has characteristics that in some important respects are different from those measured by a stationary anemometer. The conventional one-peaked continuous spectrum becomes, broadly, a two-peaked spectrum that in addition contains a set of narrowband spikes of turbulence energy, one centered on the frequency of rotor rotation and the others centered on multiples of that frequency. The rotational sampling effect on wind spectra is quantified using measurements of wind velocity by anemometers on stationary crosswind circular arrays. Characteristics of fluctuating wind are compared to measured fluctuations of bending moments of the rotor blades and power output fluctuations of a horizontal-axis wind turbine at the same site. The wind characteristics and the correlations between wind fluctuations and wind turbine fluctuations provide a basis for improving turbine design, siting, and control.


2009 ◽  
Vol 4 (3) ◽  
pp. 467-478 ◽  
Author(s):  
Tetsuya KOGAKI ◽  
Hikaru MATSUMIYA ◽  
Hiroyuki ABE ◽  
Susumu OGAWA

2012 ◽  
Vol 55 (3-4) ◽  
pp. 396-404 ◽  
Author(s):  
Tugrul U. Daim ◽  
Elvan Bayraktaroglu ◽  
Judith Estep ◽  
Dong Joon Lim ◽  
Jubin Upadhyay ◽  
...  
Keyword(s):  

2013 ◽  
Vol 7 (2) ◽  
pp. 170-177 ◽  
Author(s):  
Alessio Balleri ◽  
Allann Al‐Armaghany ◽  
Hugh Griffiths ◽  
Kinfai Tong ◽  
Takashi Matsuura ◽  
...  

Author(s):  
Yaozhi Lu ◽  
Fanzhou Zhao ◽  
Loic Salles ◽  
Mehdi Vahdati

The current development of wind turbines is moving toward larger and more flexible units, which can make them prone to fatigue damage induced by aeroelastic vibrations. The estimation of the total life of the composite components in a wind turbine requires the knowledge of both low and high cycle fatigue (LCF and HCF) data. The first aim of this study is to produce a validated numerical model, which can be used for aeroelastic analysis of wind turbines and is capable of estimating the LCF and HCF loads on the blade. The second aim of this work is to use the validated numerical model to assess the effects of extreme environmental conditions (such as high wind speeds) and rotor over-speed on low and high cycle fatigue. Numerical modelling of this project is carried out using the Computational Fluid Dynamics (CFD) & aeroelasticity code AU3D, which is written at Imperial College and developed over many years with the support from Rolls-Royce. This code has been validated extensively for unsteady aerodynamic and aeroelastic analysis of high-speed flows in gas turbines, yet, has not been used for low-speed flows around wind turbine blades. Therefore, in the first place the capability of this code for predicting steady and unsteady flows over wind turbines is studied. The test case used for this purpose is the Phase VI wind turbine from the National Renewable Energy Laboratory (NREL), which has extensive steady, unsteady and mechanical measured data. From the aerodynamic viewpoint of this study, AU3D results correlated well with the measured data for both steady and unsteady flow variables, which indicated that the code is capable of calculating the correct flow at low speeds for wind turbines. The aeroelastic results showed that increase in crosswind and shaft speed would result in an increase of unsteady loading on the blade which could decrease the lifespan of a wind turbine due to HCF. Shaft overspeed leads to significant increase in steady loading which affects the LCF behaviour. Moreover, the introduction of crosswind could result in significant dynamic vibration due to forced response at resonance.


Sign in / Sign up

Export Citation Format

Share Document