scholarly journals Wind Characteristics and Wind Models for Wind Turbine Design in Japan (1st Report, Analysis of NEDO FT Data on Turbulence Characteristics and New Normal Turbulence Model Tuned to that Result)

2007 ◽  
Vol 73 (733) ◽  
pp. 1845-1852 ◽  
Author(s):  
Tetsuya KOGAKI ◽  
Hikaru MATSUMIYA ◽  
Hiroyuki ABE ◽  
Susumu OGAWA
2009 ◽  
Vol 4 (3) ◽  
pp. 479-489
Author(s):  
Tetsuya KOGAKI ◽  
Hikaru MATSUMIYA ◽  
Hiroyuki ABE ◽  
Susumu OGAWA

1987 ◽  
Vol 109 (4) ◽  
pp. 321-329 ◽  
Author(s):  
J. R. Connell ◽  
R. L. George

The turbulence encountered by a point on a rotating wind turbine blade has characteristics that in some important respects are different from those measured by a stationary anemometer. The conventional one-peaked continuous spectrum becomes, broadly, a two-peaked spectrum that in addition contains a set of narrowband spikes of turbulence energy, one centered on the frequency of rotor rotation and the others centered on multiples of that frequency. The rotational sampling effect on wind spectra is quantified using measurements of wind velocity by anemometers on stationary crosswind circular arrays. Characteristics of fluctuating wind are compared to measured fluctuations of bending moments of the rotor blades and power output fluctuations of a horizontal-axis wind turbine at the same site. The wind characteristics and the correlations between wind fluctuations and wind turbine fluctuations provide a basis for improving turbine design, siting, and control.


2021 ◽  
Vol 6 (6) ◽  
pp. 1491-1500
Author(s):  
Liang Dong ◽  
Wai Hou Lio ◽  
Eric Simley

Abstract. To provide comprehensive information that will assist in making decisions regarding the adoption of lidar-assisted control (LAC) in wind turbine design, this paper investigates the impact of different turbulence models on the coherence between the rotor-effective wind speed and lidar measurement. First, the differences between the Kaimal and Mann models are discussed, including the power spectrum and spatial coherence. Next, two types of lidar systems are examined to analyze the lidar measurement coherence based on commercially available lidar scan patterns. Finally, numerical simulations have been performed to compare the lidar measurement coherence for different rotor sizes. This work confirms the association between the measurement coherence and the turbulence model. The results indicate that the lidar measurement coherence with the Mann turbulence model is lower than that with the Kaimal turbulence model. In other words, the potential value creation of LAC based on simulations during the wind turbine design phase, evaluated using the Kaimal turbulence model, will be diminished if the Mann turbulence model is used instead. In particular, the difference in coherence is more significant for larger rotors. As a result, this paper suggests that the impacts of different turbulence models should be considered uncertainties while evaluating the benefits of LAC.


2009 ◽  
Vol 4 (3) ◽  
pp. 467-478 ◽  
Author(s):  
Tetsuya KOGAKI ◽  
Hikaru MATSUMIYA ◽  
Hiroyuki ABE ◽  
Susumu OGAWA

2021 ◽  
Author(s):  
Liang Dong ◽  
Wai Hou Lio ◽  
Eric Simley

Abstract. To provide comprehensive information that will assist in making decisions regarding the adoption of LiDAR assisted control (LAC) in wind turbine design, this paper investigates the impact of different turbulence models on the coherence between the rotor effective wind speed and LiDAR measurement. First, the differences between the Kaimal and Mann models are discussed, including the power spectrum and spatial coherence. Next, two types of LiDAR systems are examined to analyze the LiDAR measurement coherence based on commercially available LiDAR scan patterns. Finally, numerical simulations have been performed to compare the LiDAR measurement coherence for different rotor sizes. This work confirms the association between the measurement coherence and the turbulence model. The results indicate that the LiDAR measurement coherence with the Mann turbulence model is lower than that with the Kaimal turbulence model. In other words, the value creation of LAC, evaluated using the Kaimal turbulence model, will be diminished if the Mann turbulence model is used instead. In particular, the difference in coherence is more significant for larger rotors. As a result, this paper suggests that the impacts of different turbulence models should be considered as uncertainties while evaluating the benefits of LAC.


2012 ◽  
Vol 55 (3-4) ◽  
pp. 396-404 ◽  
Author(s):  
Tugrul U. Daim ◽  
Elvan Bayraktaroglu ◽  
Judith Estep ◽  
Dong Joon Lim ◽  
Jubin Upadhyay ◽  
...  
Keyword(s):  

2013 ◽  
Vol 7 (2) ◽  
pp. 170-177 ◽  
Author(s):  
Alessio Balleri ◽  
Allann Al‐Armaghany ◽  
Hugh Griffiths ◽  
Kinfai Tong ◽  
Takashi Matsuura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document