scholarly journals A study on bolt axial tension control by the calibrated wrench method. (2nd Report. Increase of initial axial tension by the ellipse of confidence limit).

1988 ◽  
Vol 54 (508) ◽  
pp. 3048-3055
Author(s):  
Soichi HAREYAMA ◽  
Teruo NAKAMURA
Author(s):  
Soichi Hareyama ◽  
Ken-ichi Manabe ◽  
Satoshi Kobayashi

Abstract When tightening a large number of bolted joints, the calibrated wrench method is used. Since this method is indirect, the axial tension varies greatly in many cases. However, the calibrated wrench method is still widely used because of the simplicity of the tool and easy standardization. When the tightening torque and axial tension are considered to be two independent random variables, the axial tension (stress) is distributed within an elliptical confidence limit. Conventionally, it is thought that the shape of this distribution is a rhombus. Considering the permitted limit for a working load (stress) on a bolted joint, the elliptical variation has a larger margin to the yield point than that of a conventional rhombus. On the basis of this feature, we show in this paper that a higher tightening target torque and a higher axial tension can be set than before. By applying the elliptical confidence limit, one can obtain higher tightening torque and initial axial tension than the conventional values within a smaller range of variations. In this study, in the case of tightening a large number of bolted joints at factories and so forth, tightening reliability is considered as a problem associated with quality or process control and a probabilistic statistical method is investigated. Finally, we carry out analysis to establish the optimum tightening torque for bolted joints.


Author(s):  
Soichi Hareyama ◽  
Ken-ichi Manabe ◽  
Takayuki Shimodaira ◽  
Takashi Naganawa

The calibrated wrench method is often used for tightening. When tightening bolted joints, it is important to apply high axial tension. However, since the axial tension is indirectly applied in this method, it varies and has a distribution in the case of tightening carried out in the production line of a factory, for example. However, the calibrated wrench method is still widely used because of the simple tool and easy standardization. In our previous papers, we analyzed and discussed the main points of this research by a theoretical approach as discussed below. Conventionally, this type of distribution has been considered to lie within a rhombus (more precisely, within a rectangular area). However, when considering the tightening torque and axial tension as independent random variables, the distribution becomes elliptical. The same idea applies to the relation between the tightening torque and the equivalent stress for a bolt axis based on shear strain energy theory. On the other hand, regarding the variation in the tightening torque (tightening work coefficient a) actually applied to a bolt, it was reported by Bickford, Kawasaki, and others that it can vary by 15% or more from the target (indicated) tightening torque. However, the torques for wrenches used at actual assembly sites or under lubricated conditions were not reported. Therefore, it is necessary to experimentally verify that the relation between the tightening torque and the axial tension (axial stress) and equivalent stress of a bolt axis is distributed in an ellipse. Furthermore, the screw-thread characteristics (torque coefficient, equivalent stress coefficient, coefficient of friction, etc.) during the tightening process should be clarified by an experimental approach and observation. Thus, in this study, in experiments under dry (as-obtained) and lubricated (Loctite 263) conditions, the tool (preset-type and dial-type torque wrenches) and bolt strength classification (8.8 and 10.9) were changed, and the screw-thread characteristics were observed during actual bolt tightening and the characteristics under different conditions were analyzed. It was clearly shown that the tightening torque and the axial tension (axial stress) of a bolt axis and the equivalent stress vary with an elliptical distribution rather than a rhombic distribution. Finally, the validity of the tightening theory based on the elliptical confidence limit method was also verified experimentally.


Author(s):  
Soichi Hareyama ◽  
Ken-ichi Manabe

The calibrated wrench method is often used for tightening. When tightening bolted joints, it is important to apply high initial axial tension. However, since the axial tension is indirectly applied in this method, it varies and is widely distributed in the case of tightening carried out in the production line of a factory, for example. However, the calibrated wrench method is still widely used because of the simple tool used and easy standardization. Conventionally, this type of distribution has been considered to lie within a rhombus. In our previous paper, we analyzed and discussed the case when the distribution of the tightening torque and the equivalent stress of the bolted joint are considered to be independent random variables; in this case, the distribution becomes elliptical. Using this feature, a higher target tightening torque can be set than before. Finally, we established a procedure for the analysis and calculation of the optimum tightening torque for bolted joints. To ensure sufficient long-term tightening reliability to prevent breakage and loosening, a high initial axial tension and high equivalent stress can be realized using this proposed method. In this study, we analyze and discuss the case of differences in the tightening work condition (process control capability) and the tightening design condition. The tightening work coefficient a depends on the management state, the tightening working posture, and the process control capability of a tool or shop floor at a production site. According to the results of our trial calculation in Appendix A, the improvement ratio of the proposed target tightening torque is approximately 8.3% compared with the conventional method for dry friction and approximately 7.5% in the case of oily friction. Furthermore, in bolted joint tightening design, the tightening conditions under which the design conditions are satisfied are derived analytically. For the tightening design conditions of (1) a minimum axial stress of at least 50% at the yield point, and (2) an equivalent stress of 70% to 90% at the yield point, both the conventional and proposed areas of the confidence limit are obtained by precise analysis. Although the permitted limit of the tightening design condition cannot be realized by the conventional method, it can be realized by the proposed elliptical confidence limit method. Finally, we establish a method for maintaining the tightening reliability that involves applying high axial tension by increasing the target design tightening torque using the elliptical confidence limit.


Author(s):  
Soichi Hareyama ◽  
Ken-ichi Manabe ◽  
Makoto Nakashima

On tightening bolted joints, the calibrated wrench method is used in manufacturing industries for a large amount of tightening work. It is important to give high initial axial tension in respect of tightening reliability, self-loosening prevention, the prevention from fatigue breakage, etc. In this method the axial tension of a bolt is controlled by grasping the wrench torque. However, since the axial tension grasp of this method is indirect, it varies greatly in lot of tightening. Therefore, the calibrated wrench method is not so accurate from the viewpoint of axial tension control. Turn-of-nut method, torque gradient control method and plastic-region tightening, etc. are developed as the methods of getting high initial axial tension with sufficient accuracy. But the calibrated wrench method is still widely used because of the simple tool and easy standardization. In this paper, the statistical distribution of the magnitude of the combined stress (equivalent stress) by shear strain energy criterion in bolted joint, which are tightened by the calibrated wrench method is formulated. Tightening torque and equivalent stress coefficients are considered to be two independent random variables. We show that the equivalent stress obtained by those products is distributed in a confidence limit ellipse. It is thought that distribution of this kind is conventionally varied in a rhombus. However, this proposed method shows that the distribution is varied inside the confidence limit ellipse. Now, when considering the permitted limit for working load stress on a bolted joint, ellipse-like variation has big margin to yield point than the shape of a conventional rhombus. Using this feature, we show that higher tightening target torque value can be set than before by this method. Finally, this research established the analysis and calculating routine for the optimum tightening torque on bolted joints. The merit and effect of this proposed method are as follows. 1) The optimum tightening torque can be raised by about 13% than conventional method by using the experimental thread characteristic values in this research. 2) In a large amount of tightening work, the axial tension distribution (tightening coefficient Q) and distribution of equivalent stress (tightening stress coefficient S) are presumed. The predicted value of the distribution of the Q is about 1.73, which has the 20% improvement effect compared to the conventional method. Also the distribution of the S is about 1.58, which has the similar improvement effect of 18%. As a rapid calculation, the nomograph of the optimum tightening torque can be obtained by combining the tightening torque and axial tension (axial stress) as well as the distribution of equivalent stress with dimensionless data of screw shape and strength. The example of nomograph on metric coarse screw is shown. In order to maintain the tightening reliability in bolted joints, standardization of the tightening work in a production site is very important. We think that this method is useful for establishment of the job standard (technical engineering standard).


Sign in / Sign up

Export Citation Format

Share Document