scholarly journals The Hermitian Null-range of a Matrix over a Finite Field

2018 ◽  
Vol 34 ◽  
pp. 205-216 ◽  
Author(s):  
Edoardo Ballico

Let $q$ be a prime power. For $u=(u_1,\dots ,u_n), v=(v_1,\dots ,v_n)\in \mathbb {F} _{q^2}^n$, let $\langle u,v\rangle := \sum _{i=1}^{n} u_i^qv_i$ be the Hermitian form of $\mathbb {F} _{q^2}^n$. Fix an $n\times n$ matrix $M$ over $\mathbb {F} _{q^2}$. In this paper, it is considered the case $k=0$ of the set $\mathrm{Num} _k(M):= \{\langle u,Mu\rangle \mid u\in \mathbb {F} _{q^2}^n, \langle u,u\rangle =k\}$. When $M$ has coefficients in $\mathbb {F} _q$ the paper studies the set $\mathrm{Num} _k(M)_q:= \{\langle u,Mu\rangle \mid u\in \mathbb {F} _q^n,\langle u,u\rangle =k\}\subseteq \mathbb {F} _q$. The set $\mathrm{Num} _1(M)$ is the numerical range of $M$, previously introduced in a paper by Coons, Jenkins, Knowles, Luke, and Rault (case $q$ a prime $p\equiv 3\pmod{4}$), and by the author (arbitrary $q$). In this paper, it is studied in details $\mathrm{Num} _0(M)$ and $\mathrm{Num} _k(M)_q$ when $n=2$. If $q$ is even, $\mathrm{Num} _0(M)_q$ is easily described for arbitrary $n$. If $q$ is odd, then either $\mathrm{Num} _0(M)_q =\{0\}$, or $\mathrm{Num} _0(M)_q=\mathbb {F} _q$, or $\sharp (\mathrm{Num} _0(M)_q)=(q+1)/2$.

1980 ◽  
Vol 32 (6) ◽  
pp. 1299-1305 ◽  
Author(s):  
Barbu C. Kestenband

We show that any PG(2n, q2) is a disjoint union of (q2n+1 − 1)/ (q − 1) caps, each cap consisting of (q2n+1 + 1)/(q + 1) points. Furthermore, these caps constitute the “large points” of a PG(2n, q), with the incidence relation defined in a natural way.A square matrix H = (hij) over the finite field GF(q2), q a prime power, is said to be Hermitian if hijq = hij for all i, j [1, p. 1161]. In particular, hii ∈ GF(q). If if is Hermitian, so is p(H), where p(x) is any polynomial with coefficients in GF(q).Given a Desarguesian Projective Geometry PG(2n, q2), n > 0, we denote its points by column vectors:All Hermitian matrices in this paper will be 2n + 1 by 2n + 1, n > 0.


1983 ◽  
Vol 48 (1) ◽  
pp. 140-162 ◽  
Author(s):  
Chantal Berline ◽  
Gregory Cherlin

AbstractWe show that all QE rings of prime power characteristic are constructed in a straightforward way out of three components: a filtered Boolean power of a finite field, a nilpotent Jacobson radical, and the ring Zp. or the Witt ring W2(F4) (which is the characteristic four analogue of the Galois field with four elements).


1992 ◽  
Vol 111 (2) ◽  
pp. 193-197 ◽  
Author(s):  
R. W. K. Odoni

Let be the finite field with q elements (q a prime power), let r 1 and let X1, , Xr be independent indeterminates over . We choose an arbitrary and a d 1 and consider


1968 ◽  
Vol 8 (3) ◽  
pp. 523-543 ◽  
Author(s):  
G. E. Wall

Let Fq denote the finite field with q elements, Zm the residue class ring Z/mZ. It is known that the projective linear groups G = PSL2(Fq) and PGL2(Fq) (q a prime-power ≥ 4) are characterised among finite insoluble groups by the property that, if two cyclic subgroups of G of even order intersect non-trivially, they generate a cyclic subgroup (cf. Brauer, Suzuki, Wall [2], Gorenstein, Walter [3]). In this paper, we give a similar characterisation of the groups G = PSL2 (Zþt+1) and PGL2 (Zþt+1) (p a prime ≥ 5, t ≥ 1).


2016 ◽  
Vol 08 (04) ◽  
pp. 1650073
Author(s):  
Congcong Wang ◽  
Yingying Zhang ◽  
Zhuoqun Li ◽  
Xiaona Zhang ◽  
You Gao

Let [Formula: see text] be a finite field with [Formula: see text] elements, where [Formula: see text] is a prime power. [Formula: see text] denotes the [Formula: see text]-dimensional row linear space over [Formula: see text]. In this paper, we construct a series of LDPC codes based on the subspaces of singular linear space over [Formula: see text], and calculate their parameters.


10.37236/700 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Le Anh Vinh

Let $\mathcal{P}$ be a set of $n$ points in the finite plane $\mathbb{F}_q^2$ over the finite field $\mathbb{F}_q$ of $q$ elements, where $q$ is an odd prime power. For any $s \in \mathbb{F}_q$, denote by $A (\mathcal{P}; s)$ the number of ordered triangles whose vertices in $\mathcal{P}$ having area $s$. We show that if the cardinality of $\mathcal{P}$ is large enough then $A (\mathcal{P}; s)$ is close to the expected number $|\mathcal{P}|^3/q$.


1971 ◽  
Vol 23 (3) ◽  
pp. 531-535 ◽  
Author(s):  
Richard J. Turyn

A C-matrix is a square matrix of order m + 1 which is 0 on the main diagonal, has ±1 entries elsewhere and satisfies . Thus, if , I + C is an Hadamard matrix of skew type [3; 6] and, if , iI + C is a (symmetric) complex Hadamard matrix [4]. For m > 1, we must have . Such matrices arise from the quadratic character χ in a finite field, when m is an odd prime power, as [χ(ai – aj)] suitably bordered, and also from some other constructions, in particular those of skew type Hadamard matrices. (For we must have m = a2 + b2, a, b integers.)


Sign in / Sign up

Export Citation Format

Share Document