Cenozoic Tectonics and Sedimentation on the Pacific Margin of the Antarctic Peninsula: ABSTRACT

Author(s):  
Robert D. Larter, Peter F. Barker
1997 ◽  
Vol 9 (4) ◽  
pp. 426-433 ◽  
Author(s):  
Angelo Camerlenghi ◽  
A. Crise ◽  
C.J. Pudsey ◽  
E. Accerboni ◽  
R. Laterza ◽  
...  

We present two time series of bottom current and temperature collected 8 m above the seabed on either side of a large sediment drift located on the continental rise of the Pacific margin of the Antarctic Peninsula. The mean current speed is comparable (6.2 cm s−1 and 6.1 cm s−1 respectively), but the mean direction differs by about 121°. The direction of mean flow follows the bathymetric contour, and the maximum speed never exceeds 20 cm s−1 (below the typical benthic storm threshold). The potential temperature is remarkably stable (0.11 ± 0.01°C and 0.13 ± 0.02°C at the two sites). The cross-covariance indicates a significant peak at 20.2 days lag, slightly longer than the travel time of 18.7 days calculated between the two stations following the isobaths (98.4 km) and thus providing evidence for the topographic control on bottom water flow. The observed bottom water flow is consistent with deposition of Holocene hemipelagic sediments of the ‘drift maintenance’ stage. Indicators for palaeoceanographic conditions during glacial periods of the ‘drift maintenance’ stage and the older ‘drift growth’ stage are at present too scarce to understand fully how the past oceanographic conditions influenced the evolution of the drifts.


2003 ◽  
Vol 15 (3) ◽  
pp. 339-363 ◽  
Author(s):  
V. Volpi ◽  
A. Camerlenghi ◽  
C.-D. Hillenbrand ◽  
M. Rebesco ◽  
R. Ivaldi

2021 ◽  
pp. M55-2018-68 ◽  
Author(s):  
Philip T. Leat ◽  
Teal R. Riley

AbstractThe Antarctic Peninsula contains a record of continental-margin volcanism extending from Jurassic to Recent times. Subduction of the Pacific oceanic lithosphere beneath the continental margin developed after Late Jurassic volcanism in Alexander Island that was related to extension of the continental margin. Mesozoic ocean-floor basalts emplaced within the Alexander Island accretionary complex have compositions derived from Pacific mantle. The Antarctic Peninsula volcanic arc was active from about Early Cretaceous times until the Early Miocene. It was affected by hydrothermal alteration, and by regional and contact metamorphism generally of zeolite to prehnite–pumpellyite facies. Distinct geochemical groups recognized within the volcanic rocks suggest varied magma generation processes related to changes in subduction dynamics. The four groups are: calc-alkaline, high-Mg andesitic, adakitic and high-Zr, the last two being described in this arc for the first time. The dominant calc-alkaline group ranges from primitive mafic magmas to rhyolite, and from low- to high-K in composition, and was generated from a mantle wedge with variable depletion. The high-Mg and adakitic rocks indicate periods of melting of the subducting slab and variable equilibration of the melts with mantle. The high-Zr group is interpreted as peralkaline and may have been related to extension of the arc.


2016 ◽  
Vol 29 (1) ◽  
pp. 47-60 ◽  
Author(s):  
T.R. Riley ◽  
M.J. Flowerdew ◽  
R.J. Pankhurst ◽  
P.T. Leat ◽  
I.L. Millar ◽  
...  

AbstractThe continental margin of Gondwana preserves a record of long-lived magmatism from the Andean Cordillera to Australia. The crustal blocks of West Antarctica form part of this margin, with Palaeozoic–Mesozoic magmatism particularly well preserved in the Antarctic Peninsula and Marie Byrd Land. Magmatic events on the intervening Thurston Island crustal block are poorly defined, which has hindered accurate correlations along the margin. Six samples are dated here using U-Pb geochronology and cover the geological history on Thurston Island. The basement gneisses from Morgan Inlet have a protolith age of 349±2 Ma and correlate closely with the Devonian–Carboniferous magmatism of Marie Byrd Land and New Zealand. Triassic (240–220 Ma) magmatism is identified at two sites on Thurston Island, with Hf isotopes indicating magma extraction from Mesoproterozoic-age lower crust. Several sites on Thurston Island preserve rhyolitic tuffs that have been dated at 182 Ma and are likely to correlate with the successions in the Antarctic Peninsula, particularly given the pre-break-up position of the Thurston Island crustal block. Silicic volcanism was widespread in Patagonia and the Antarctic Peninsula at ~ 183 Ma forming the extensive Chon Aike Province. The most extensive episode of magmatism along the active margin took place during the mid-Cretaceous. This Cordillera ‘flare-up’ event of the Gondwana margin is also developed on Thurston Island with granitoid magmatism dated in the interval 110–100 Ma.


Sign in / Sign up

Export Citation Format

Share Document