Ranger, Fault Block 6: FO-Sand Horizontal Drilling, Long Beach Unit, Wilmington Oil Field

AAPG Bulletin ◽  
2000 ◽  
Vol 84 ◽  
Author(s):  
LINDSEY, KIRBY, THUMS Long Beach Co
2021 ◽  
Vol 73 (05) ◽  
pp. 59-60
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 203335, “Using MSE and Downhole Drilling Dynamics in Achieving a Record Extended-Reach Well Offshore Abu Dhabi,” by Nashat Abbas and Jamal Al Nokhatha, ADNOC, and Luis Salgado, Halliburton, et al., prepared for the 2020 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, held virtually 9–12 November. The paper has not been peer reviewed. Complex extended-reach-drilling (ERD) wells often present challenges with regard to geological aspects of data requirement and transmittal, reactive geosteering response times, and accuracy of well placement. Such scenarios may require innovative approaches in Middle East carbonate reservoirs. The objective of the complete paper is to illustrate that, by assessing the details of reservoir geology and key operational markers relevant for best practices, drilling approaches can be customized for each reservoir or scenario. Reservoir Background and Geology The planned reservoir section is a single horizontal of approximately 25,000-ft lateral length at a spacing of 250 m from adjacent injectors. The well was drilled from an artificial island. Field A, a shallow-water oil field, is the second-largest offshore field and the fourth-largest field in the world. Horizontal drilling was introduced in 1989, and an extensive drilling campaign has been implemented since then using steerable drilling technologies. This study is concerned only with wells drilled to develop Reservoir B in Field A, which contributes to the main part of initial oil in place and production. The thick limestone reservoir is subdivided into six porous layers, labeled from shallow to deep as A, B, C, D, E, and F. Each porous layer is separated by thin, low-porosity stylolites. The reservoir sublayer B, consisting of approximately 18-ft-thick calcareous limestones, was selected as the target zone for the 25,420-ft horizontal section. ERD, constructed on artificial islands, began on 2014 with a measured depth (MD)/true vertical depth (TVD) ratio approaching 2.2:1 or 2.4:1. A recent ERD well, Well A, was drilled at the beginning of 2020 with a MD/TVD ratio of 5:1. This value is a clear indication of progressively increasing challenges since the start of the project. Mechanical specific energy (MSE) has long been used to evaluate and enhance the rate of penetration (ROP); however, its use as an optimization tool in ERD wells has not been equally significant. This may have been mostly because of historical use of surface-measured parameters, which do not necessarily indicate the energy required to destroy the rock, particularly in ERD wells. Using optimization tools as part of the bottomhole assembly (BHA) downhole close to the bit provides actual weight-on-bit (WOB) and torque-on-bit (TOB) applied to the drilling bit to destroy the rock and, thus, results in more-representative MSE measurements to optimize drilling parameters and ROP in ERD wells.


2014 ◽  
Vol 915-916 ◽  
pp. 1128-1131
Author(s):  
Yu Sheng Ding ◽  
Shuang Yan Chen ◽  
Jun Xie ◽  
Ju Biao Zhou ◽  
Li Yao Li

Inefficient reserves in fault block belongs to low permeability thin interbed, thus water flooding development process has exposed many contradictions which are serious heterogeneity, large difference of suction of interlayer. Entering the water injection development, the injected water which rapidly advance along the high permeability channel causes water channeling and water flooding, which intenses development contradictions between layers. The reservoir numerical simulation technology on computer can reappear the movement of water and gas in the underground reservoir development process and describes the underground remaining oil distribution of inefficient reserves in complex fault block, which summarizes the remaining oil distribution rule of the water flooding development for complex fault block of inefficient reserves and provides basis for the establishment of oil field development adjustment scheme.


AAPG Bulletin ◽  
1924 ◽  
Vol 8 ◽  
Author(s):  
A. T. Schwennesen, R. M. Overbeck,
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document