distribution rule
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 31)

H-INDEX

9
(FIVE YEARS 1)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 107
Author(s):  
Xinquan Wang ◽  
Yichen Que ◽  
Kangyu Wang ◽  
Hongguo Diao ◽  
Yunliang Cui ◽  
...  

Rigid-flexible composite pouch piles with expanded bottom (RFCPPEB) are generally considered as new symmetrical piles in practical engineering, but their bearing characteristics and design method are still not completely understood. The objective of this study is to investigate the vertical bearing performance and the optimal design scheme of RFCPPEB. Hence, laboratory modeling tests for this symmetric structure and an ABAQUS three-dimensional (3D) numerical simulation analysis were used to study the vertical bearing characteristics on bottom-expanded piles and rigid-flexible composite piles with expanded bottom. The vertical bearing capacity, shaft resistance, pile tip resistance distribution rule, and load sharing ratio of RFCPPEB were analyzed and verified using different bottom expansion dimensions and cemented soil thicknesses. The results revealed that the optimal bottom expansion ratio of rigid bottom-expanded piles was 1.8 when the ratio of pile body to bottom-expanded pile head was 9:1. When the bottom expansion ratio (D/d) was increased, the bearing capacity of bottom-expanded piles was significantly increased at D/d = 1.4 and D/d = 1.8 compared to that of D/d = 1.0, reaching 1.67 and 2.29 times, respectively, while for D/d = 1.6 and D/d = 2.0, the ultimate bearing capacity remained unchanged. Besides, shaft resistance played an important role in the bearing process of the rigid bottom-expanded piles and RFCPPEB. When the shaft resistance was increased, the ultimate bearing capacity of the pile foundation was significantly improved. The shaft resistance of RFCPPEB was increased with increasing cemented soil thickness. The increases in the shaft resistance and thickness of the cemented soil showed a nonlinear growth, and the maximum shaft resistance was approximately 75 cm from the pile top. When the diameter of the expanded head was 1.8 times the diameter of the pipe pile and slightly larger than the thickness of the cemented soil (0.5 times the diameter of the pipe pile), the optimal amount of concrete 425.5 kN/m3 required for per unit volume around piles was obtained, with the RFCPPEB ultimate bearing capacity of 7.5 kN. For RFCPPEB, the soil pressure at the pile tip was directly proportional to the pile top load under small load and was decreased in the form of a half quadric curve under large load. It reached the most reasonable position where the slope of the quadric curve was the largest when the thickness of the cemented soil was larger than 0.5 times the diameter of the pipe pile.


2021 ◽  
Author(s):  
Jia-Meng Tao ◽  
Saeed-EI Ashram ◽  
Yuan Zhang ◽  
Ya-Biao Weng ◽  
Rui-Qing Lin

Abstract Background: Neoschoengastia gallinarum is a widespread agricultural pest in China.The larvae of N. gallinarum are parasitic on the body surface of poultry. Performance, carcass quality, and normal marketing of mite infected broilers are severely affected by pruritus and pockmark lesions on the body surface. In China, N. gallinarum research has primarily focused on occurrence regularity, biology, and control methods. The genetic structure, variation, and genetic relationship between the N. gallinarum populations in China are still unclear.Methods: Genetic variations and structure among populations of N. gallinarum was examined and analyzed based on the nucleotide sequences of a 1522 nt variable region of the mitochondrial tandem genes (COI, COII, and ND5) among 4 populations from 7 collection sites in southern China.Results: A total of 192 individuals in 4 populations were analyzed. The tandem genes sequences were aligned, and 75 haplotypes were detected, 4 of these shared between populations. The range of haplotype diversity was from 0.860 (FJ) to 0.978 (GX). The pairwise FST values among populations were higher (0.096-0.551).The haplotype network mediation map and phylogenetic tree showed that the haplotypes were divided into two clade, Which did not completely follow the distribution rule of geographical populations. The AMOVA result showed that the percentage of variation within populations (72.94%) was higher than that among populations (27.06%). Neutral test and mismatch analysisrevealed that N. gallinarum had not experienced an obvious population expansion in recent historical periods, and the population size was relatively stable.Conclusions: The N. gallinarum population showed high genetic diversity based on mitochondrial tandem genes analysis and strong ecological adaptability. Despite the fact that geogrphic isolation causes certain genetic differentiation among populations, N. gallinarum high gene flow among populations as a result of human trade activities, and there was no obvious geographical genetic structure.


2021 ◽  
Vol 11 (21) ◽  
pp. 10476
Author(s):  
Dongliang Ji ◽  
Hongbao Zhao ◽  
Lei Wang ◽  
Hui Cheng ◽  
Jianfeng Xu

Rock masses with a distinct structure may present a transversely isotropic character; thus, the stress state in a transversely isotropic elastic half-plane surface is an important way to assess the behavior of the interaction between the distributed loading and the surroundings. Most previous theoretical analyses have considered a loading direction that is either vertical or horizontal, and the stress distribution that results from the effect of different loading directions remains unclear. In this paper, based on the transversely isotropic elastic half-plane surface theory, a stress solution that is applicable to distributed loading in any direction is proposed to further examine the loading effect. The consistency between the analytical solution and numerical simulations showed the effectiveness of the proposal that was introduced. Then, it was utilized to analyze the stress distribution rule by changing the Poisson’s ratio and Young’s modulus of the model. The effects of the formation dip angle on the stress state are also examined. The stress distribution, depending on the physical property parameters and relative angle, is predicted using an analytical solution, and the mechanisms associated with the transversely isotropic elastic half-plane surface subjected to the loading in any direction are clarified. Additionally, extensive analyses regarding this case study, with respect to the mechanical behavior associated with changes in the stress boundary, is available. Hence, the proposed analytical solution can more realistically account for the loading problem in many engineering practices.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jian Li ◽  
Liping Xu ◽  
Xiaowen Yu ◽  
Jianjun Peng ◽  
Lei Huang

The coin-tap method performs nondestructive testing by measuring the width of the tapping response pulse on the surface of the material. Existing studies have shown that defects in the material will cause the width of the tapping response pulse to increase. However, experiments have confirmed that different detection positions in the defective area will show different values of the width of the tapping response pulse, and the physical laws behind it have not been studied yet. To discuss its physical meaning, a mathematical model of the defective area is established, a method for calculating the width of the tapping response pulse is proposed, and a composite honeycomb structure with preset defects is used for data testing. Both the test results and the calculation results show that the pulse width of the tapping response will decrease with the increase of the defect depth and the deviation of the tapping position from the defect center. The consistency between the calculated results and the experimental results shows that the established defect model and pulse width calculation method can better explain the distribution law of the pulse width of the tapping response in the defective area.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yingfa Lu ◽  
Gan Liu ◽  
Kai Cui ◽  
Jie Zheng

Force distribution during progressive slope failure is an important element in slope stability analysis. In this study, five mechanical failure modes are proposed for thrust- and pull-type slopes, respectively, and five field forms of thrust-type slopes are described. The properties of progressive failure are evaluated quantitatively: the failure mode of slope obeys the geo-material rule under the peak stress state, and the instability range is gradually developed. The critical stress state zone is in the process of dynamic change with the development of deformation. It appears that the driving sliding force is greater than the frictional resistance along the sliding surface. When rock or soil stabilizing stresses are at maximum, the vector sum of the driving sliding stress and stabilizing stress is equal to zero at the critical state. The frictional resistance is equal to the driving sliding force in the stable and less-stable regions, and the normal pressure is wherever equal to the counterpressure. Rigid, flexible, and rigid-flexible design theories are proposed for slope control. New terms are defined and used to evaluate the stability. The conventional local and surplus stability factors of slopes and their calculation are explained. The force distribution rule is analyzed during progressive failure, and the conventional stability factor definition is discussed. The geological settings and monitoring data of landslides are used to analyse changes in the critical stress state. An example is given to illustrate the failure process analysis. The results show that progressive failure can be well represented and the safety factor can be well described by the main thrust method (MTM), comprehensive displacement method (CDM), and surplus displacement method (SDM), which can be used to feasibly evaluate slope stability.


2021 ◽  
Vol 33 (8) ◽  
pp. 087108
Author(s):  
Haizhuang Jiang ◽  
Wanli Kang ◽  
Bobo Zhou ◽  
Fang Wang ◽  
Hongbin Yang ◽  
...  

2021 ◽  
Vol 5 (2) ◽  
pp. 55
Author(s):  
Yang Zhao ◽  
Shicun Zhao ◽  
Yi Zhang ◽  
Da Wang

In this paper, a novel escape-time algorithm is proposed to calculate the connectivity’s degree of Julia sets generated from polynomial maps. The proposed algorithm contains both quantitative analysis and visual display to measure the connectivity of Julia sets. For the quantitative part, a connectivity criterion method is designed by exploring the distribution rule of the connected regions, with an output value Co in the range of [0,1]. The smaller the Co value outputs, the better the connectivity is. For the visual part, we modify the classical escape-time algorithm by highlighting and separating the initial point of each connected area. Finally, the Julia set is drawn into different brightnesses according to different Co values. The darker the color, the better the connectivity of the Julia set. Numerical results are included to assess the efficiency of the algorithm.


2021 ◽  
Vol 13 (7) ◽  
pp. 3931
Author(s):  
Can Zhang ◽  
Shiming Fang

Resource-based cities are cities that depend on the exploitation and primary processing of natural resources, such as minerals, metals, and oil, and whose rise and development are highly dependent on resources. Due to over exploitation, many problems related to ecosystem degradation have been caused. Ecological restoration of land space is urgent. One of the difficulties in carrying out ecological restoration of territorial space lies in the identification of key areas for ecological restoration and diagnosis of regional ecological problems. In this study, we applied the spatial assessment of ecological sensitivity and the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model to quantitatively analyze the overall ecosystem in Huangshi city so as to delimit the ecological restoration division of Huangshi City. The results showed that: (1) The overall distribution rule is that vegetation, such as that in mountains and forests, is dense, the sensitivity around water and wetlands is high, and the distribution of mines in Huangshi is high. (2) For the period 1980–2018, the habitat quality index of Huangshi was good, with a slight decreasing trend. The simulated habitat quality distribution was consistent with the region-dominated land cover type. (3) Huangshi formed a spatial pattern with natural protected areas as the priority protection areas, mining areas as the key restoration areas, and natural protected areas and mining areas as the general restoration areas. (4) During the period of 1980–2018, the water management of Huangshi generally improved, which indicates that the water pollution control in Huangshi had a positive effect. The results of this study can provide some reference for the green transformation development and ecological restoration of resource-based cities.


Sign in / Sign up

Export Citation Format

Share Document