scholarly journals An Experimental Study on Competitive Coevolution of MLP Classifiers

MENDEL ◽  
2017 ◽  
Vol 23 (1) ◽  
pp. 41-48
Author(s):  
Marco Castellani ◽  
Rahul Lalchandani

This paper investigates the effectiveness and efficiency of two competitive (predator-prey) evolutionaryprocedures for training multi-layer perceptron classifiers: Co-Adaptive Neural Network Training, and a modifiedversion of Co-Evolutionary Neural Network Training. The study focused on how the performance of the two procedures varies as the size of the training set increases, and their ability to redress class imbalance problems of increasing severity. Compared to the customary backpropagation algorithm and a standard evolutionary algorithm, the two competitive procedures excelled in terms of quality of the solutions and execution speed. Co-Adaptive Neural Network Training excelled on class imbalance problems, and on classification problems of moderately large training sets. Co-Evolutionary Neural Network Training performed best on the largest data sets. The size of the training set was the most problematic issue for the backpropagation algorithm and the standard evolutionary algorithm, respectively in terms of accuracy of the solutions and execution speed. Backpropagation and the evolutionary algorithm were also not competitive on the class imbalance problems, where data oversampling could only partially remedy their shortcomings.

Author(s):  
Fei Long ◽  
Fen Liu ◽  
Xiangli Peng ◽  
Zheng Yu ◽  
Huan Xu ◽  
...  

In order to improve the electrical quality disturbance recognition ability of the neural network, this paper studies a depth learning-based power quality disturbance recognition and classification method: constructing a power quality perturbation model, generating training set; construct depth neural network; profit training set to depth neural network training; verify the performance of the depth neural network; the results show that the training set is randomly added 20DB-50DB noise, even in the most serious 20dB noise conditions, it can reach more than 99% identification, this is a tradition. The method is impossible to implement. Conclusion: the deepest learning-based power quality disturbance identification and classification method overcomes the disadvantage of the selection steps of artificial characteristics, poor robustness, which is beneficial to more accurately and quickly discover the category of power quality issues.


Sign in / Sign up

Export Citation Format

Share Document