scholarly journals Homotopy Perturbation Method for Solving Linear Fuzzy Delay Differential Equations Using Double Parametric Approach

2020 ◽  
Vol 8 (5) ◽  
pp. 551-558 ◽  
Author(s):  
Ali F Jameel ◽  
Sardar G Amen ◽  
Azizan Saaban ◽  
Noraziah H Man ◽  
Fathilah M Alipiah

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
D. Olvera ◽  
A. Elías-Zúñiga ◽  
L. N. López de Lacalle ◽  
C. A. Rodríguez

We expand the application of the enhanced multistage homotopy perturbation method (EMHPM) to solve delay differential equations (DDEs) with constant and variable coefficients. This EMHPM is based on a sequence of subintervals that provide approximate solutions that require less CPU time than those computed from the dde23 MATLAB numerical integration algorithm solutions. To address the accuracy of our proposed approach, we examine the solutions of several DDEs having constant and variable coefficients, finding predictions with a good match relative to the corresponding numerical integration solutions.





Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 40 ◽  
Author(s):  
Shumaila Javeed ◽  
Dumitru Baleanu ◽  
Asif Waheed ◽  
Mansoor Shaukat Khan ◽  
Hira Affan

The analysis of Homotopy Perturbation Method (HPM) for the solution of fractional partial differential equations (FPDEs) is presented. A unified convergence theorem is given. In order to validate the theory, the solution of fractional-order Burger-Poisson (FBP) equation is obtained. Furthermore, this work presents the method to find the solution of FPDEs, while the same partial differential equation (PDE) with ordinary derivative i.e., for α = 1 , is not defined in the given domain. Moreover, HPM is applied to a complicated obstacle boundary value problem (BVP) of fractional order.





Sign in / Sign up

Export Citation Format

Share Document