scholarly journals Approximate Solutions of Delay Differential Equations with Constant and Variable Coefficients by the Enhanced Multistage Homotopy Perturbation Method

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
D. Olvera ◽  
A. Elías-Zúñiga ◽  
L. N. López de Lacalle ◽  
C. A. Rodríguez

We expand the application of the enhanced multistage homotopy perturbation method (EMHPM) to solve delay differential equations (DDEs) with constant and variable coefficients. This EMHPM is based on a sequence of subintervals that provide approximate solutions that require less CPU time than those computed from the dde23 MATLAB numerical integration algorithm solutions. To address the accuracy of our proposed approach, we examine the solutions of several DDEs having constant and variable coefficients, finding predictions with a good match relative to the corresponding numerical integration solutions.


2020 ◽  
Vol 8 (5) ◽  
pp. 551-558 ◽  
Author(s):  
Ali F Jameel ◽  
Sardar G Amen ◽  
Azizan Saaban ◽  
Noraziah H Man ◽  
Fathilah M Alipiah




2009 ◽  
Vol 64 (7-8) ◽  
pp. 420-430 ◽  
Author(s):  
Mehdi Dehghan ◽  
Jalil Manafian

AbstractIn this work, the homotopy perturbation method proposed by Ji-Huan He [1] is applied to solve both linear and nonlinear boundary value problems for fourth-order partial differential equations. The numerical results obtained with minimum amount of computation are compared with the exact solution to show the efficiency of the method. The results show that the homotopy perturbation method is of high accuracy and efficient for solving the fourth-order parabolic partial differential equation with variable coefficients. The results show also that the introduced method is a powerful tool for solving the fourth-order parabolic partial differential equations.



2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Hector Vazquez-Leal ◽  
Arturo Sarmiento-Reyes ◽  
Yasir Khan ◽  
Uriel Filobello-Nino ◽  
Alejandro Diaz-Sanchez

The fact that most of the physical phenomena are modelled by nonlinear differential equations underlines the importance of having reliable methods for solving them. This work presents the rational biparameter homotopy perturbation method (RBHPM) as a novel tool with the potential to find approximate solutions for nonlinear differential equations. The method generates the solutions in the form of a quotient of two power series of different homotopy parameters. Besides, in order to improve accuracy, we propose the Laplace-Padé rational biparameter homotopy perturbation method (LPRBHPM), when the solution is expressed as the quotient of two truncated power series. The usage of the method is illustrated with two case studies. On one side, a Ricatti nonlinear differential equation is solved and a comparison with the homotopy perturbation method (HPM) is presented. On the other side, a nonforced Van der Pol Oscillator is analysed and we compare results obtained with RBHPM, LPRBHPM, and HPM in order to conclude that the LPRBHPM and RBHPM methods generate the most accurate approximated solutions.



2014 ◽  
Vol 11 (4) ◽  
pp. 1637-1648
Author(s):  
Baghdad Science Journal

In this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.



Sign in / Sign up

Export Citation Format

Share Document