scholarly journals A Convergence Algorithm of Boundary Elements for the Laplace Operator's Dirichlet Eigenvalue Problem

2021 ◽  
Vol 9 (4) ◽  
pp. 579-587
Author(s):  
Ali Naji Shaker
2019 ◽  
Vol 22 (5) ◽  
pp. 1414-1436 ◽  
Author(s):  
Leandro M. Del Pezzo ◽  
Raúl Ferreira ◽  
Julio D. Rossi

Abstract In this paper we study the Dirichlet eigenvalue problem $$\begin{array}{} \displaystyle -\Delta_p u-\Delta_{J,p}u =\lambda|u|^{p-2}u \text{ in } \Omega,\quad u=0 \, \text{ in } \, \Omega^c=\mathbb{R}^N\setminus\Omega. \end{array}$$ Here Ω is a bounded domain in ℝN, Δpu is the standard local p-Laplacian and ΔJ,pu is a nonlocal p-homogeneous operator of order zero. We show that the first eigenvalue (that is isolated and simple) satisfies $\begin{array}{} \displaystyle \lim_{p\to\infty} \end{array}$(λ1)1/p = Λ where Λ can be characterized in terms of the geometry of Ω. We also find that the eigenfunctions converge, u∞ = $\begin{array}{} \displaystyle \lim_{p\to\infty} \end{array}$ up, and find the limit problem that is satisfied in the limit.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Gabriella Bognár ◽  
Ondřej Došlý

We establish an estimate for the ratio of eigenvalues of the Dirichlet eigenvalue problem for the equation with one-dimensionalp-Laplacian involving a nonnegative unimodal (single-well) potential.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Hua Chen ◽  
Hong-Ge Chen

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset\mathbb{R}^n \; (n\geq 2) $\end{document}</tex-math></inline-formula> be a bounded domain with continuous boundary <inline-formula><tex-math id="M2">\begin{document}$ \partial\Omega $\end{document}</tex-math></inline-formula>. In this paper, we study the Dirichlet eigenvalue problem of the fractional Laplacian which is restricted to <inline-formula><tex-math id="M3">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M4">\begin{document}$ 0&lt;s&lt;1 $\end{document}</tex-math></inline-formula>. Denoting by <inline-formula><tex-math id="M5">\begin{document}$ \lambda_{k} $\end{document}</tex-math></inline-formula> the <inline-formula><tex-math id="M6">\begin{document}$ k^{th} $\end{document}</tex-math></inline-formula> Dirichlet eigenvalue of <inline-formula><tex-math id="M7">\begin{document}$ (-\triangle)^{s}|_{\Omega} $\end{document}</tex-math></inline-formula>, we establish the explicit upper bounds of the ratio <inline-formula><tex-math id="M8">\begin{document}$ \frac{\lambda_{k+1}}{\lambda_{1}} $\end{document}</tex-math></inline-formula>, which have polynomially growth in <inline-formula><tex-math id="M9">\begin{document}$ k $\end{document}</tex-math></inline-formula> with optimal increase orders. Furthermore, we give the explicit lower bounds for the Riesz mean function <inline-formula><tex-math id="M10">\begin{document}$ R_{\sigma}(z) = \sum_{k}(z-\lambda_{k})_{+}^{\sigma} $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M11">\begin{document}$ \sigma\geq 1 $\end{document}</tex-math></inline-formula> and the trace of the Dirichlet heat kernel of fractional Laplacian.</p>


Sign in / Sign up

Export Citation Format

Share Document