Ursa Minor

2021 ◽  
Vol 62 (1) ◽  
pp. 179-189
Author(s):  
Sarah Emily Duff
Keyword(s):  
2018 ◽  
Vol 14 (S344) ◽  
pp. 94-95
Author(s):  
Yutaka Komiyama

AbstractWe have carried out a wide and deep imaging survey for the Local Group dwarf spheroidal galaxy Ursa Minor (UMi) using Hyper Suprime-Cam (HSC). The data cover out beyond the nominal tidal radius down to ~25 mag in i band, which is ~2 mag below the main sequence turn-off point. The structural parameters of UMi are derived using red giant branch (RGB) stars and sub-giant branch (SGB) stars, and the tidal radius is suggested to be larger than those estimated by the previous studies. It is also found that the distribution of bluer RGB/SGB stars is more extended than that of redder RGB/SGB stars. The fraction of binary systems is estimated to be ~0.4 from the morphology of the main sequences.


2014 ◽  
Vol 442 (2) ◽  
pp. 1718-1730 ◽  
Author(s):  
Andrew B. Pace ◽  
Gregory D. Martinez ◽  
Manoj Kaplinghat ◽  
Ricardo R. Muñoz

2018 ◽  
Vol 616 ◽  
pp. A96 ◽  
Author(s):  
Yves Revaz ◽  
Pascale Jablonka

We present the results of a set of high-resolution chemo-dynamical simulations of dwarf galaxies in a ΛCDM cosmology. Out of an original (3.4 Mpc/h)3 cosmological box, a sample of 27 systems are re-simulated from z = 70 to z = 0 using a zoom-in technique. Gas and stellar properties are confronted to the observations in the greatest details: in addition to the galaxy global properties, we investigated the model galaxy velocity dispersion profiles, half-light radii, star formation histories, stellar metallicity distributions, and [Mg/Fe] abundance ratios. The formation and sustainability of the metallicity gradients and kinematically distinct stellar populations are also tackled. We show how the properties of six Local Group dwarf galaxies, NGC 6622, Andromeda II, Sculptor, Sextans, Ursa Minor and Draco are reproduced, and how they pertain to three main galaxy build-up modes. Our results indicate that the interaction with a massive central galaxy could be needed for a handful of Local Group dwarf spheroidal galaxies only, the vast majority of the systems and their variety of star formation histories arising naturally from a ΛCDM framework. We find that models fitting well the local Group dwarf galaxies are embedded in dark haloes of mass between 5 × 108 to a few 109 M⊙, without any missing satellite problem. We confirm the failure of the abundance matching approach at the mass scale of dwarf galaxies. Some of the observed faint however gas-rich galaxies with residual star formation, such as Leo T and Leo P, remain challenging. They point out the need of a better understanding of the UV-background heating.


2020 ◽  
pp. 148-151
Author(s):  
HJP Arnold ◽  
P Doherty ◽  
P Moore ◽  
Arnold Wolfendale
Keyword(s):  

Author(s):  
Michael Konig ◽  
Stefan Binnewies ◽  
Phillip Helbig
Keyword(s):  

Author(s):  
Rosemary F. G. Wyse ◽  
Gerard Gilmore ◽  
Sofia Feltzing ◽  
Mark Houdashelt
Keyword(s):  

2009 ◽  
Vol 700 (1) ◽  
pp. 426-435 ◽  
Author(s):  
Michael Loewenstein ◽  
Alexander Kusenko ◽  
Peter L. Biermann
Keyword(s):  

1987 ◽  
Vol 117 ◽  
pp. 153-160 ◽  
Author(s):  
M. Aaronson ◽  
E. Olszewski

We report the cumulative results of an on-going effort to measure the stellar velocity dispersion in two nearby dwarf spheroidal galaxies. Radial velocities having an accuracy ≲ 2 km s−1 have now been secured for ten stars in Ursa Minor and eleven stars in Draco (including 16 K giants and 5 C types). Most objects have been observed at two or more epochs. Stars having non-variable velocities yield in both dwarfs a large (∼ 10 km s−1) dispersion. These results cannot be explained by atmospheric motions, and circumstantial evidence suggests that the effects of undetected binaries are also not likely to be important. Instead, it seems that both spheroidals contain a substantial dark matter component, which therefore must be “cold” in form.


Sign in / Sign up

Export Citation Format

Share Document