stellar velocity
Recently Published Documents


TOTAL DOCUMENTS

238
(FIVE YEARS 60)

H-INDEX

33
(FIVE YEARS 7)

Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Mauro D’Onofrio ◽  
Cesare Chiosi

We have analyzed the distribution of early-type galaxies (ETGs) in the effective surface intensity vs. effective radius (Ie−Re) plane and in the total luminosity vs. central stellar velocity dispersion (L−σ) diagram, with the aim of studying the physical variables that allow the transformation of one space-parameter into the other. We find that the classical Faber–Jackson relation L=L0σα, in which the parameters L0 and α are confined in a small range of possible values, is incompatible with the distribution observed in the Ie−Re plane. The two distributions become mutually consistent only if luminosity is not considered a pure proxy of mass but a variable tightly dependent on the past history of mass assembling and star formation and on the present evolutionary state of the stellar content of a galaxy. The solution comes by considering the L=L0′σβ law proposed by D’Onofrio et al. in 2020, in which both L0′ and β can vary considerably from galaxy to galaxy. We will also show that the data of the Illustris numerical simulation prove the physical foundation of the L=L0′σβ law and confirm the prediction of the Zone of Exclusion (ZoE) originating from the intersection of the virial law with the L=L0′σβ relation. The ZoE is the region in the Ie−Re and Re−Ms diagrams avoided by real galaxies, and the border of which marks the condition of ‘full’ virial equilibrium with no recent significant merger events and no undergoing star formation.


2021 ◽  
Vol 507 (4) ◽  
pp. 5780-5795
Author(s):  
I Marini ◽  
S Borgani ◽  
A Saro ◽  
G L Granato ◽  
C Ragone-Figueroa ◽  
...  

ABSTRACT Using the DIANOGA hydrodynamical zoom-in simulation set of galaxy clusters, we analyse the dynamics traced by stars belonging to the brightest cluster galaxies (BCGs) and their surrounding diffuse component, forming the intracluster light (ICL), and compare it to the dynamics traced by dark matter and galaxies identified in the simulations. We compute scaling relations between the BCG and cluster velocity dispersions and their corresponding masses (i.e. $M_\mathrm{BCG}^{\star }$–$\sigma _\mathrm{BCG}^{\star }$, M200–σ200, $M_\mathrm{BCG}^{\star }$–M200, and $\sigma _\mathrm{BCG}^{\star }$–σ200), we find in general a good agreement with observational results. Our simulations also predict $\sigma _\mathrm{BCG}^{\star }$–σ200 relation to not change significantly up to redshift z = 1, in line with a relatively slow accretion of the BCG stellar mass at late times. We analyse the main features of the velocity dispersion profiles, as traced by stars, dark matter, and galaxies. As a result, we discuss that observed stellar velocity dispersion profiles in the inner cluster regions are in excellent agreement with simulations. We also report that the slopes of the BCG velocity dispersion profile from simulations agree with what is measured in observations, confirming the existence of a robust correlation between the stellar velocity dispersion slope and the cluster velocity dispersion (thus, cluster mass) when the former is computed within 0.1R500. Our results demonstrate that simulations can correctly describe the dynamics of BCGs and their surrounding stellar envelope, as determined by the past star formation and assembly histories of the most massive galaxies of the Universe.


2021 ◽  
Vol 57 (1) ◽  
pp. 157-166
Author(s):  
Xin-Fa Deng ◽  
Xiao-Qing Wen

Using the apparent-magnitude limited active galactic nucleus (AGN) host galaxy sample of the Sloan Digital Sky Survey Data Release 12 (SDSS DR12), we investigate the environmental dependence of age, stellar mass, the star formation rate (SFR) and stellar velocity dispersion of AGN host galaxies. We divide the whole apparent-magnitude limited AGN sample into many subsamples with a redshift binning size of Δz = 0.01, and analyse the environmental dependence of these galaxy properties of subsamples in each redshift bin. It turns out that these parameters of AGN host galaxies seemingly only have a weak environmental dependence.


Author(s):  
M L Buzzo ◽  
B Ziegler ◽  
P Amram ◽  
M Verdugo ◽  
C E Barbosa ◽  
...  

Abstract We present optical VLT/MUSE integral field spectroscopy data of the merging galaxy NGC 1487. We use fitting techniques to study the ionized gas emission of this merger and its main morphological and kinematical properties. We measured flat and sometimes inverted oxygen abundance gradients in the subsystems composing NGC 1487, explained by metal mixing processes common in merging galaxies. We also measured widespread star-forming bursts, indicating that photoionisation by stars is the primary ionization source of the galaxy. The kinematic map revealed a rotating pattern in the gas in the northern tail of the system, suggesting that the galaxy may be in the process of rebuilding a disc. The gas located in the central region has larger velocity dispersion (σ ≈ 50 km s−1) than the remaining regions, indicating kinematic heating, possibly owing to the ongoing interaction. Similar trends were, however, not observed in the stellar velocity-dispersion map, indicating that the galaxy has not yet achieved equilibrium, and the nebular and stellar components are still kinematically decoupled. Based on all our measurements and findings, and specially on the mass estimates, metallicity gradients and velocity fields of the system, we propose that NGC 1487 is the result of an ongoing merger event involving smallish dwarf galaxies within a group, in a pre-merger phase, resulting in a relic with mass and physical parameters similar to a dwarf galaxy. Thus, we may be witnessing the formation of a dwarf galaxy by merging of smaller clumps at z=0.


Author(s):  
Jonah S Gannon ◽  
Bililign T Dullo ◽  
Duncan A Forbes ◽  
R Michael Rich ◽  
Javier Román ◽  
...  

Abstract The dominant physical formation mechanism(s) for ultra-diffuse galaxies (UDGs) is still poorly understood. Here, we combine new, deep imaging from the Jeanne Rich Telescope with deep integral field spectroscopy from the Keck II telescope to investigate the formation of UDG1137+16. Our new analyses confirm both its environmental association with the low density UGC 6594 group, along with its large size of 3.3 kpc and status as a UDG. The new imaging reveals two distinct stellar components for UDG1137+16, indicating that a central stellar body is surrounded by an outer stellar envelope undergoing tidal interaction. Both the components have approximately similar stellar masses. From our integral field spectroscopy we measure a stellar velocity dispersion within the half-light radius (15 ± 4 km s−1) and find that UDG1137+16 is similar to some other UDGs in that it is likely dark matter dominated. Incorporating literature measurements, we also examine the current state of UDG observational kinematics. Placing these data on the central stellar velocity dispersion – stellar mass relation, we suggest there is little evidence for UDG1137+16 being created through a strong tidal interaction. Finally, we investigate the constraining power current dynamical mass estimates (from stellar and globular cluster velocity dispersions) have on the total halo mass of UDGs. As most are measured within the half-light radius, they are unable to accurately constrain UDG total halo masses.


2021 ◽  
Vol 645 ◽  
pp. L1
Author(s):  
C. E. Barbosa ◽  
C. Spiniello ◽  
M. Arnaboldi ◽  
L. Coccato ◽  
M. Hilker ◽  
...  

Context. The stellar initial mass function (IMF) seems to be variable and not universal, contrary to what has been argued in the literature over the last three decades. Several relations of the low-mass end of the IMF slope with other stellar population, photometrical, and kinematical parameters of massive early-type galaxies (ETGs) have been proposed, but consensus on the factual cause of the observed variations has not yet been reached. Aims. We investigate the relationship between the IMF and other stellar population parameters in NGC 3311, the central galaxy of the Hydra I cluster. NGC 3311 is a unique laboratory, characterized by old and metal-rich stars, that is similar to other massive ETGs for which the IMF slope has been measured to be bottom-heavy (i.e., dwarf-rich); however, it has unusual stellar velocity dispersion and [α/Fe] profiles, both of which increase with radius. Methods. We use the spatially resolved stellar population parameters (age, total metallicity, and [α/Fe]) that were derived in a forthcoming paper (Barbosa et al. 2020) – via the full-spectrum fitting of high signal-to-noise MUSE observations – to compare the IMF slope in the central part of NGC 3311 (R ≲ 16 kpc) against other stellar parameters, with the goal of assessing their relations and dependencies. Results. For NGC 3311, we unambiguously invalidate the previously observed direct correlation between the IMF slope and the local stellar velocity dispersion, confirming some doubts that had been raised in the literature. This relation may simply arise as a spatial coincidence between the region with the largest stellar velocity dispersion and the region where the oldest in situ population is found and dominates the light. We also show robust evidence that the proposed IMF−metallicity relation is contaminated by the degeneracy between these two parameters. We do confirm that the stellar content in the innermost region of NGC 3311 follows a bottom-heavy IMF, in line with other literature results. The tightest correlations we found are those between stellar age and the IMF and between the galactocentric radius and the IMF. Conclusions. The variation of the IMF at its low-mass end is not due to kinematical, dynamical, or global properties in NGC 3311. We speculate instead that the IMF might be dwarf-dominated in the “red nuggets” that formed through a very short and intense star formation episode at high redshifts (z >  2) when the Universe was denser and richer in gas, and which then ended up being the central cores of today’s giant ellipticals.


2020 ◽  
Vol 501 (2) ◽  
pp. 2332-2351
Author(s):  
Sasha R Brownsberger ◽  
Lisa Randall

ABSTRACT We detail a method to measure the correspondence between dark matter (DM) models and observations of stellar populations within Local Group dwarf spheroidal galaxies (LG dSphs) that assumes no parametric stellar distribution. Solving the spherical or cylindrical Jeans equations, we calculate the consistency of DM and stellar kinematic models with stellar positions and line-of-sight velocities. Our method can be used to search for signals of standard and exotic DM distributions. Applying our methodology to the Fornax LG dSph and using statistical bootstrapping, we find: (i) that oblate or prolate cored DM haloes match the stellar data, respectively, ≃60 or ≃370 times better than oblate or prolate cusped DM haloes for isotropic and isothermal stellar velocity dispersions, (ii) that cusped spherical DM haloes and cored spherical DM haloes match the Fornax data similarly well for isotropic stellar velocity dispersions, (iii) that the semiminor to semimajor axial ratio of spheroidal DM haloes are more extreme than 80 per cent of those predicted by Lambda cold dark matter with baryon simulations, (iv) that oblate cored or cusped DM haloes are, respectively, ≃5 or ≃30 times better matches to Fornax than prolate cored or cusped DM haloes, and (v) that Fornax shows no evidence of a disc-like structure with more than two per cent of the total DM mass. We further note that the best-fitting cusped haloes universally favour the largest mass and size fit parameters. If these extreme limits are decreased, the cusped halo likelihoods decrease relative to those of cored haloes.


2020 ◽  
Vol 501 (1) ◽  
pp. 693-700
Author(s):  
Andrea V Macciò ◽  
Daniel Huterer Prats ◽  
Keri L Dixon ◽  
Tobias Buck ◽  
Stefan Waterval ◽  
...  

ABSTRACT We use hydrodynamical cosmological simulations to show that it is possible to create, via tidal interactions, galaxies lacking dark matter (DM) in a DM-dominated universe. We select dwarf galaxies from the NIHAO project, obtained in the standard cold dark matter model and use them as initial conditions for simulations of satellite–central interactions. After just one pericentric passage on an orbit with a strong radial component, NIHAO dwarf galaxies can lose up to 80 per cent of their DM content, but, most interestingly, their central (≈8 kpc) DM-to-stellar mass ratio changes from a value of ∼25, as expected from numerical simulations and abundance matching techniques, to roughly unity as reported for NGC 1052-DF2 and NGC 1054-DF4. The stellar velocity dispersion drops from ∼30 $\, \rm km\, s^{-1}$ before infall to values as low as 6 ± 2 $\, \rm km\, s^{-1}$. These, and the half-light radius around 3 kpc, are in good agreement with observations from van Dokkum and collaborators. Our study shows that it is possible to create a galaxy without DM starting from typical dwarf galaxies formed in a DM-dominated universe, provided they live in a dense environment.


2020 ◽  
Vol 500 (2) ◽  
pp. 2666-2684
Author(s):  
F C Cerqueira-Campos ◽  
A Rodríguez-Ardila ◽  
R Riffel ◽  
M Marinello ◽  
A Prieto ◽  
...  

ABSTRACT Coronal-line forest (CLiF) active galactic nuclei (AGNs) are characterized by strong high-ionization lines, which contrasts with what is found in most AGNs. Here, we carry out a multiwavelength analysis aimed at understanding the physical processes in the narrow-line region (NLR) of these objects, and at discovering whether they are indeed a special class of AGNs. By comparing coronal emission-line ratios we conclude that there are no differences between CLiF and non-CLiF AGNs. We derive physical conditions of the NLR gas and we find electron densities in the range of 3.6 × 102 to 1.7 × 104 cm−3 and temperatures of 3.7 × 103 to 6.3 × 104 K, suggesting that the ionization mechanism is associated primarily with photoionization by the AGN. We suggest an NLR dominated by matter-bounded clouds to explain the high-ionization line spectrum observed. The mass of the central black hole, derived from the stellar velocity dispersion, shows that most of the objects have values in the interval 107–108 M⊙. Our results imply that CLiF AGNs are not in a separate category of AGNs. In all optical/near-infrared emission-line properties analysed, they represent an extension to the low/high ends of the distribution within the AGN class.


2020 ◽  
Vol 4 (11) ◽  
pp. 203
Author(s):  
Kathleen A. Hamilton-Campos ◽  
Raymond C. Simons ◽  
Gregory F. Snyder ◽  
Daniel Ceverino ◽  
Avishai Dekel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document