velocity dispersions
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 22)

H-INDEX

44
(FIVE YEARS 4)

2021 ◽  
Vol 909 (1) ◽  
pp. 12
Author(s):  
M. Girard ◽  
D. B. Fisher ◽  
A. D. Bolatto ◽  
R. Abraham ◽  
R. Bassett ◽  
...  

2021 ◽  
Vol 908 (2) ◽  
pp. L35
Author(s):  
James Esdaile ◽  
Karl Glazebrook ◽  
Ivo Labbé ◽  
Edward Taylor ◽  
Corentin Schreiber ◽  
...  

2020 ◽  
Vol 501 (2) ◽  
pp. 2332-2351
Author(s):  
Sasha R Brownsberger ◽  
Lisa Randall

ABSTRACT We detail a method to measure the correspondence between dark matter (DM) models and observations of stellar populations within Local Group dwarf spheroidal galaxies (LG dSphs) that assumes no parametric stellar distribution. Solving the spherical or cylindrical Jeans equations, we calculate the consistency of DM and stellar kinematic models with stellar positions and line-of-sight velocities. Our method can be used to search for signals of standard and exotic DM distributions. Applying our methodology to the Fornax LG dSph and using statistical bootstrapping, we find: (i) that oblate or prolate cored DM haloes match the stellar data, respectively, ≃60 or ≃370 times better than oblate or prolate cusped DM haloes for isotropic and isothermal stellar velocity dispersions, (ii) that cusped spherical DM haloes and cored spherical DM haloes match the Fornax data similarly well for isotropic stellar velocity dispersions, (iii) that the semiminor to semimajor axial ratio of spheroidal DM haloes are more extreme than 80 per cent of those predicted by Lambda cold dark matter with baryon simulations, (iv) that oblate cored or cusped DM haloes are, respectively, ≃5 or ≃30 times better matches to Fornax than prolate cored or cusped DM haloes, and (v) that Fornax shows no evidence of a disc-like structure with more than two per cent of the total DM mass. We further note that the best-fitting cusped haloes universally favour the largest mass and size fit parameters. If these extreme limits are decreased, the cusped halo likelihoods decrease relative to those of cored haloes.


2020 ◽  
Vol 4 (11) ◽  
pp. 203
Author(s):  
Kathleen A. Hamilton-Campos ◽  
Raymond C. Simons ◽  
Gregory F. Snyder ◽  
Daniel Ceverino ◽  
Avishai Dekel ◽  
...  

2020 ◽  
Vol 900 (1) ◽  
pp. 50 ◽  
Author(s):  
Yousuke Utsumi ◽  
Margaret J. Geller ◽  
Harus J. Zahid ◽  
Jubee Sohn ◽  
Ian P. Dell’Antonio ◽  
...  

2020 ◽  
Vol 498 (2) ◽  
pp. 2440-2455
Author(s):  
Yuxuan (宇轩) Yuan (原) ◽  
Mark R Krumholz ◽  
Blakesley Burkhart

ABSTRACT Molecular line observations using a variety of tracers are often used to investigate the kinematic structure of molecular clouds. However, measurements of cloud velocity dispersions with different lines, even in the same region, often yield inconsistent results. The reasons for this disagreement are not entirely clear, since molecular line observations are subject to a number of biases. In this paper, we untangle and investigate various factors that drive linewidth measurement biases by constructing synthetic position–position–velocity cubes for a variety of tracers from a suite of self-gravitating magnetohydrodynamic simulations of molecular clouds. We compare linewidths derived from synthetic observations of these data cubes to the true values in the simulations. We find that differences in linewidth as measured by different tracers are driven by a combination of density-dependent excitation, whereby tracers that are sensitive to higher densities sample smaller regions with smaller velocity dispersions, opacity broadening, especially for highly optically thick tracers such as CO, and finite resolution and sensitivity, which suppress the wings of emission lines. We find that, at fixed signal-to-noise ratio, three commonly used tracers, the J = 4 → 3 line of CO, the J = 1 → 0 line of C18O, and the (1,1) inversion transition of NH3, generally offer the best compromise between these competing biases, and produce estimates of the velocity dispersion that reflect the true kinematics of a molecular cloud to an accuracy of $\approx 10{{\ \rm per\ cent}}$ regardless of the cloud magnetic field strengths, evolutionary state, or orientations of the line of sight relative to the magnetic field. Tracers excited primarily in gas denser than that traced by NH3 tend to underestimate the true velocity dispersion by $\approx 20{{\ \rm per\ cent}}$ on average, while low-density tracers that are highly optically thick tend to have biases of comparable size in the opposite direction.


2020 ◽  
Vol 640 ◽  
pp. A84 ◽  
Author(s):  
František Dinnbier ◽  
Pavel Kroupa

Context. Star clusters form in the densest parts of infrared dark clouds. The emergence of massive stars expels the residual gas that has not formed stars yet. Gas expulsion lowers the gravitational potential of the embedded cluster, unbinding many of the cluster stars. These stars then move on their own trajectories in the external gravitational field of the Galaxy, forming a tidal tail. Aims. We investigate, for the first time, the formation and evolution of a tidal tail that forms due to expulsion of primordial gas. We contrast the morphology and kinematics of this tail with that of another tidal tail that forms by gradual dynamical evaporation of the star cluster. We intend to provide predictions that can determine the dynamical origin of possibly observed tidal tails around dynamically evolved (age  ≳  100 Myr) galactic star clusters by the Gaia mission. These observations might estimate the fraction of the initial cluster population that gets released in the gas expulsion event. The severity of the initial gas expulsion is given by the star formation efficiency and the timescale of gas expulsion for the cluster when it was still embedded in its natal gas. A study with a more extended parameter space of the initial conditions is performed in the follow up paper. Methods. We provide a semi-analytical model for the tail evolution. The model is compared against direct numerical simulations using NBODY6. Results. Tidal tails released during gas expulsion have different kinematic properties than the tails gradually forming due to evaporation; the latter kind have been extensively studied. The gas expulsion tidal tail shows non-monotonic expansion with time, where longer epochs of expansion are interspersed with shorter epochs of contraction. The tail thickness and velocity dispersions vary strongly, but not exactly periodically, with time. The times of minima of tail thickness and velocity dispersions are given only by the properties of the galactic potential, and not by the properties of the cluster. The estimates provided by the (semi-)analytical model for the extent of the tail, the minima of tail thickness, and velocity dispersions are in a very good agreement with the NBODY6 simulations. This implies that the semi-analytic model can be used to estimate the properties of the gas expulsion tidal tail for a cluster of a given age and orbital parameters without the necessity of performing numerical simulations.


2020 ◽  
Vol 640 ◽  
pp. L6
Author(s):  
Spandan Choudhury ◽  
Jaime E. Pineda ◽  
Paola Caselli ◽  
Adam Ginsburg ◽  
Stella S. R. Offner ◽  
...  

Context. Star formation takes place in cold dense cores in molecular clouds. Earlier observations have found that dense cores exhibit subsonic non-thermal velocity dispersions. In contrast, CO observations show that the ambient large-scale cloud is warmer and has supersonic velocity dispersions. Aims. We aim to study the ammonia (NH3) molecular line profiles with exquisite sensitivity towards the coherent cores in L1688 in order to study their kinematical properties in unprecedented detail. Methods. We used NH3 (1,1) and (2,2) data from the first data release (DR1) in the Green Bank Ammonia Survey (GAS). We first smoothed the data to a larger beam of 1′ to obtain substantially more extended maps of velocity dispersion and kinetic temperature, compared to the DR1 maps. We then identified the coherent cores in the cloud and analysed the averaged line profiles towards the cores. Results. For the first time, we detected a faint (mean NH3(1,1) peak brightness < 0.25 K in TMB), supersonic component towards all the coherent cores in L1688. We fitted two components, one broad and one narrow, and derived the kinetic temperature and velocity dispersion of each component. The broad components towards all cores have supersonic linewidths (ℳS ≥ 1). This component biases the estimate of the narrow dense core component’s velocity dispersion by ≈28% and the kinetic temperature by ≈10%, on average, as compared to the results from single-component fits. Conclusions. Neglecting this ubiquitous presence of a broad component towards all coherent cores causes the typical single-component fit to overestimate the temperature and velocity dispersion. This affects the derived detailed physical structure and stability of the cores estimated from NH3 observations.


Sign in / Sign up

Export Citation Format

Share Document