scholarly journals The Search for Dark Matter in Draco and Ursa Minor: A Three Year Progress Report

1987 ◽  
Vol 117 ◽  
pp. 153-160 ◽  
Author(s):  
M. Aaronson ◽  
E. Olszewski

We report the cumulative results of an on-going effort to measure the stellar velocity dispersion in two nearby dwarf spheroidal galaxies. Radial velocities having an accuracy ≲ 2 km s−1 have now been secured for ten stars in Ursa Minor and eleven stars in Draco (including 16 K giants and 5 C types). Most objects have been observed at two or more epochs. Stars having non-variable velocities yield in both dwarfs a large (∼ 10 km s−1) dispersion. These results cannot be explained by atmospheric motions, and circumstantial evidence suggests that the effects of undetected binaries are also not likely to be important. Instead, it seems that both spheroidals contain a substantial dark matter component, which therefore must be “cold” in form.

2004 ◽  
Vol 220 ◽  
pp. 365-366
Author(s):  
J. R. Kuhn ◽  
D. Kocevski

A simple and natural explanation for the dynamics and morphology of the Local Group Dwarf Spheroidal galaxies, Draco (Dra) and Ursa Minor (UMi), is that they are weakly unbound stellar systems with no significant dark matter component. A gentle, but persistent, Milky Way (MW) tide has left them in their current kinematic and morphological state (the “parametric tidal excitation”). A new test of a dark matter dominated dS potential follows from a careful observation of the “clumpiness” of the dS stellar surface density.


2004 ◽  
Vol 220 ◽  
pp. 359-364
Author(s):  
Mark I. Wilkinson ◽  
Jan T. Kleyna ◽  
N. Wyn Evans ◽  
Gerard F. Gilmore

The results of a large radial velocity survey of the Draco and Ursa Minor dwarf spheroidal galaxies are presented. the velocity dispersion profiles of both objects are very similar: initially the dispersion increases with radius, while at radii approaching the outer limit of the stellar distribution we observe a sharp fall-off. We present the results of mass modeling based on these new data – the mass to light ratios are found to be about 400M⊙/L⊙. Evidence is also presented that the dark matter in the central regions of UMi has a core-like distribution. Finally, we demonstrate that the inner regions of UMi have not been affected by tides and discuss the implications of our data for MOdified Newtonian Dynamics (MOND).


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Laura V. Sales ◽  
Amina Helmi ◽  
Giuseppina Battaglia

We use N-body simulations to study the effects of tides on the kinematical structure of satellite galaxies orbiting a Milky Way-like potential. Here we focus on the evolution of a spherical, dark matter dominated satellite, which is modelled with two stellar components set ab initio to be spatially and kinematically segregated, in a way that resembles the configuration of the metal poor and metal rich stellar populations in several dwarf spheroidals of the Local Group. We find that an important attenuation of the initial differences in the distribution of the two stellar components occurs for orbits with small pericentric radii. This is mainly due to (i) the loss of the gravitational support provided by the dark matter component after tidal stripping takes place and (ii) tides preferentially affect the more extended stellar component, leading to a net decrease in its velocity dispersion as a response for the mass loss, which thus shrinks the kinematical gap. We apply these ideas to the Sculptor and Carina dwarf spheroidals. Differences in their orbits might help to explain why in the former a clear kinematical separation between metal poor and metal rich stars is apparent, while in Carina this segregation is significantly more subtle.


2019 ◽  
Vol 490 (1) ◽  
pp. 231-242 ◽  
Author(s):  
Manoj Kaplinghat ◽  
Mauro Valli ◽  
Hai-Bo Yu

ABSTRACT We point out an anticorrelation between the central dark matter (DM) densities of the bright Milky Way dwarf spheroidal galaxies (dSphs) and their orbital pericenter distances inferred from Gaia data. The dSphs that have not come close to the Milky Way centre (like Fornax, Carina and Sextans) are less dense in DM than those that have come closer (like Draco and Ursa Minor). The same anticorrelation cannot be inferred for the ultrafaint dSphs due to large scatter, while a trend that dSphs with more extended stellar distributions tend to have lower DM densities emerges with ultrafaints. We discuss how these inferences constrain proposed solutions to the Milky Way’s too-big-to-fail problem and provide new clues to decipher the nature of DM.


2010 ◽  
Vol 6 (S271) ◽  
pp. 110-118
Author(s):  
Joe Wolf

AbstractBy manipulating the spherical Jeans equation, Wolf et al. (2010) show that the mass enclosed within the 3D deprojected half-light radius r1/2 can be determined with only mild assumptions about the spatial variation of the stellar velocity dispersion anisotropy as long as the projected velocity dispersion profile is fairly flat near the half-light radius, as is typically observed. They find M1/2 = 3 G−1 〈σ2los〉 r1/2 ≃ 4 G−1 〈σ2los〉 Re, where 〈σ2los〉 is the luminosity-weighted square of the line-of-sight velocity dispersion and Re is the 2D projected half-light radius. This finding can be used to show that all of the Milky Way dwarf spheroidal galaxies (MW dSphs) are consistent with having formed within a halo of mass approximately 3 × 109 M⊙, assuming a ΛCDM cosmology. In addition, the dynamical I-band mass-to-light ratio ϒI1/2 vs. M1/2 relation for dispersion-supported galaxies follows a U-shape, with a broad minimum near ϒI1/2 ≃ 3 that spans dwarf elliptical galaxies to normal ellipticals, a steep rise to ϒI1/2 ≃ 3,200 for ultra-faint dSphs, and a more shallow rise to ϒI1/2 ≃ 800 for galaxy cluster spheroids.


2005 ◽  
Vol 631 (2) ◽  
pp. L137-L141 ◽  
Author(s):  
Ricardo R. Muñoz ◽  
Peter M. Frinchaboy ◽  
Steven R. Majewski ◽  
Jeffrey R. Kuhn ◽  
Mei-Yin Chou ◽  
...  

2020 ◽  
Vol 501 (2) ◽  
pp. 2332-2351
Author(s):  
Sasha R Brownsberger ◽  
Lisa Randall

ABSTRACT We detail a method to measure the correspondence between dark matter (DM) models and observations of stellar populations within Local Group dwarf spheroidal galaxies (LG dSphs) that assumes no parametric stellar distribution. Solving the spherical or cylindrical Jeans equations, we calculate the consistency of DM and stellar kinematic models with stellar positions and line-of-sight velocities. Our method can be used to search for signals of standard and exotic DM distributions. Applying our methodology to the Fornax LG dSph and using statistical bootstrapping, we find: (i) that oblate or prolate cored DM haloes match the stellar data, respectively, ≃60 or ≃370 times better than oblate or prolate cusped DM haloes for isotropic and isothermal stellar velocity dispersions, (ii) that cusped spherical DM haloes and cored spherical DM haloes match the Fornax data similarly well for isotropic stellar velocity dispersions, (iii) that the semiminor to semimajor axial ratio of spheroidal DM haloes are more extreme than 80 per cent of those predicted by Lambda cold dark matter with baryon simulations, (iv) that oblate cored or cusped DM haloes are, respectively, ≃5 or ≃30 times better matches to Fornax than prolate cored or cusped DM haloes, and (v) that Fornax shows no evidence of a disc-like structure with more than two per cent of the total DM mass. We further note that the best-fitting cusped haloes universally favour the largest mass and size fit parameters. If these extreme limits are decreased, the cusped halo likelihoods decrease relative to those of cored haloes.


1984 ◽  
Vol 88 ◽  
pp. 171-176
Author(s):  
J. Andersen ◽  
B. Nordström

AbstractWe present a progress report on some current radial-velocity observing programs aiming to provide complete data for selected samples of stars covering the whole sky. The velocities are based on ESO coudé spectra as well as CORAVEL observations obtained in both hemispheres. As a first step, the Bright Star Catalogue has been completed in radial velocities ( ~1500 stars or ~l/3 of the southern BS stars). Currently, we are approaching completion of some 4000 dwarf F stars from Olsen’s (1983) uvbyß photometric survey. The data will be used to study the velocity dispersion of these stars as a function of age and metal abundance from a kinematically unbiased sample. They will also provide a basis for an improved determination of Kz. Extension of the program to the G dwarfs is planned for the near future.


Sign in / Sign up

Export Citation Format

Share Document