Green's function method in covariant density functional theory

2015 ◽  
Vol 46 (1) ◽  
pp. 012006 ◽  
Author(s):  
TingTing SUN
1991 ◽  
Vol 253 ◽  
Author(s):  
R. Zeller ◽  
P. Lang ◽  
B. Drittler ◽  
P.H. Dederichs

ABSTRACTWe present a multiple-scattering Green's function method to calculate the electronic structure of ideal surfaces and surfaces with point defects. In our method we use the full potential in each atomic cell and describe the surface as a twodimensional defect of the bulk crystal by removing several (three to five) adjacent layers. We have implemented our method within density-functional theory in the local-spin-density approximation and present first results for the Cu (001)-surface, for magnetic monolayers on this surface and for such monolayers in bulk Cu.


Author(s):  
Lin Huang ◽  
Yu-Jia Zeng ◽  
Dan Wu ◽  
Nan-Nan Luo ◽  
Ye-Xin Feng ◽  
...  

Achieving high tunneling magnetoresistance (TMR) in molecular-scale junctions is attractive for their applications in spintronics. By using density-functional theory (DFT) in combination with the nonequilibrium Green's function (NEGF) method, we...


2013 ◽  
Vol T154 ◽  
pp. 014010 ◽  
Author(s):  
J Meng ◽  
Y Chen ◽  
H Z Liang ◽  
Y F Niu ◽  
Z M Niu ◽  
...  

Nanoscale ◽  
2014 ◽  
Vol 6 (19) ◽  
pp. 11121-11129 ◽  
Author(s):  
Ming-Xing Zhai ◽  
Xue-Feng Wang ◽  
P. Vasilopoulos ◽  
Yu-Shen Liu ◽  
Yao-Jun Dong ◽  
...  

We investigate the spin-dependent electric and thermoelectric properties of ferromagnetic zigzag α-graphyne nanoribbons (ZαGNRs) using density-functional theory combined with non-equilibrium Green's function method.


Sign in / Sign up

Export Citation Format

Share Document