Self-referenced rectangular path cyclic interferometer with polarization phase shifting

2011 ◽  
Vol 51 (1) ◽  
pp. 126 ◽  
Author(s):  
S. Sarkar ◽  
N. Ghosh ◽  
S. Chakraborty ◽  
K. Bhattacharya
2010 ◽  
Vol 30 (1) ◽  
pp. 127-131
Author(s):  
孔梅梅 Kong Meimei ◽  
高志山 Gao Zhishan ◽  
陈磊 Chen Lei ◽  
徐春生 Xu Chunsheng

2016 ◽  
Vol 679 ◽  
pp. 129-134
Author(s):  
Wan Duo Wu ◽  
Qiang Xian Huang ◽  
Chao Qun Wang ◽  
Ting Ting Wu ◽  
Hong Xie

The technique utilizing single-frequency laser interferometry has very high measurement accuracy, but it has rigorous requirements for optical design which is affected by many factors. In order to achieve single-frequency laser interferometry with large stroke and high precision, the integral layout, the polarization phase shifting technique and the common mode rejection method are adopted to design the length interferometry system. This paper analyzes factors and design requirements which affect measurement accuracy with large stroke. Based on polarization phase shifting technique, the system employs the four-beam-signal detection technique and the common mode rejection method, to make a differential processing of four mutually orthogonal signals. Thus, the influences of zero-drift of intensity and environmental change on system are reduced. Combined with a 200 phase subdivision, the system achieves the resolution with 0.8 nm. Under the VC++ environment, the displacement measurement results are compensated and corrected according to the environmental parameters. Compared with the Renishaw XL-80 laser interferometer, the system has better stability in short term. In the measuring range of 60 mm, the effectiveness of the system is verified.


2016 ◽  
Author(s):  
E. Sanchez ◽  
M. E. Benedet ◽  
D. P. Willemann ◽  
A. V. Fantin ◽  
A. G. Albertazzi

2005 ◽  
Vol 44 (35) ◽  
pp. 7548 ◽  
Author(s):  
Chunyu Zhao ◽  
Dongyel Kang ◽  
James H. Burge

Sign in / Sign up

Export Citation Format

Share Document