Bandwidth Shaping of Parametric Frequency Combs via Dispersion Engineering

CLEO: 2014 ◽  
2014 ◽  
Author(s):  
Yoshitomo Okawachi ◽  
Michael R. E. Lamont ◽  
Kevin Luke ◽  
Daniel O. Carvalho ◽  
Michal Lipson ◽  
...  
Author(s):  
H. Taheri ◽  
A. A. Eftekhar ◽  
K. Wiesenfeld ◽  
A. Adibi

2016 ◽  
Vol 94 (6) ◽  
Author(s):  
Y. Henry Wen ◽  
Michael R. E. Lamont ◽  
Steven H. Strogatz ◽  
Alexander L. Gaeta

2014 ◽  
Vol 39 (12) ◽  
pp. 3535 ◽  
Author(s):  
Yoshitomo Okawachi ◽  
Michael R. E. Lamont ◽  
Kevin Luke ◽  
Daniel O. Carvalho ◽  
Mengjie Yu ◽  
...  

Author(s):  
Y. Henry Wen ◽  
Michael R. E. Lamont ◽  
Isabel M. Kloumann ◽  
Steven H. Strogatz ◽  
Alexander L. Gaeta

Nanophotonics ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 1461-1467 ◽  
Author(s):  
Yuhao Guo ◽  
Jing Wang ◽  
Zhaohong Han ◽  
Kazumi Wada ◽  
Lionel C. Kimerling ◽  
...  

AbstractOctave-spanning frequency comb generation in the deep mid-infrared (>5.5 μm) typically requires a high pump power, which is challenging because of the limited power of narrow linewidth lasers at long wavelengths. We propose twofold dispersion engineering for a Ge-on-Si microcavity to enable both dispersion flattening and dispersion hybridization over a wide band from 3.5 to 10 μm. A two-octave mode-locked Kerr frequency comb can be generated from 2.3 to 10.2 μm, with a pump power as low as 180 mW. It has been shown that dispersion flattening greatly enhances the spectral broadening of the generated comb, whereas dispersion hybridization improves its spectral flatness.


Sign in / Sign up

Export Citation Format

Share Document