pump power
Recently Published Documents


TOTAL DOCUMENTS

563
(FIVE YEARS 120)

H-INDEX

26
(FIVE YEARS 3)

Laser Physics ◽  
2022 ◽  
Vol 32 (2) ◽  
pp. 025102
Author(s):  
Liwei Xu ◽  
Xiaohan Chen ◽  
Ming Li ◽  
Bin Zhang ◽  
Qiongyu Hu ◽  
...  

Abstract In this work, we report an all-fiber Nd-doped passively mode-locked fiber laser based on nonlinear polarization rotation mechanism operating in the 1.06 μm region. When the pump power was 300 mW, a pulse with a maximum average output power of 0.63 mW, a narrowest pulse duration of 1.22 ps and a pulse repetition rate of 14.25 MHz was obtained.


2022 ◽  
Author(s):  
B. M. El-den ◽  
Adel zaghloul

Abstract The Raman gain coefficient, the attenuations at signal and pump wavelengths and the refractive indices of both core and cladding of silica doped Germania optical fiber are functions of the Germania ratio, temperature and wavelengths. The Raman amplifier gain increases with Germania ratio but it decreases with temperature. Also, Raman gain either increases or decreases with signal wavelength. As the fiber core radius increases, the Raman gain decreases. The gain distribution through the amplifier length of dual pumps with power divided ratio (S=0.5) is better than that for the forward pump amplifier and the backward pump amplifier. The forward pump has a maximized gain but the backward pump has a minimized gain, while the dual pumps have both the maximum and minimized gains. The final amplifier gain for the three kinds of pumps with the same pump power (Pp) is equally.The pump wavelength (λp=1.4553μm) gives the biggest Raman gain at the center of wideband signal wavelength (λs=1.50 to 1.60μm). With λp =1.48μm, the gain increases with λs until λs=1.57μm and after that the gain decreases with λs and so with the above three kinds of pumps, gain fluctuations over the band wavelength of signal. The threshold pump power and gain saturation are studied.


2021 ◽  
Author(s):  
Gleb V. Kuptsov ◽  
Vladimir A. Petrov ◽  
Alexey V. Laptev ◽  
Alyona O. Konovalova ◽  
Victor V. Petrov

2021 ◽  
Vol 33 (6) ◽  
pp. 1162-1175
Author(s):  
Xiao-long Fu ◽  
De-you Li ◽  
Hong-jie Wang ◽  
Yong-guang Cheng ◽  
Xian-zhu Wei

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Itsushi Sakata ◽  
Takuya Sakata ◽  
Kohji Mizoguchi ◽  
Satoshi Tanaka ◽  
Goro Oohata ◽  
...  

AbstractIn a dissipative quantum system, we report the dynamic mode decomposition (DMD) analysis of damped oscillation signals. We used a reflection-type pump-probe method to observe time-domain signals, including the coupled modes of long-lived longitudinal optical phonons and quickly damped plasmons (LOPC) at various pump powers. The Fourier transformed spectra of the observed damped oscillation signals show broad and asymmetric modes, making it difficult to evaluate their frequencies and damping rates. We then used DMD to analyze the damped oscillation signals by precisely determining their frequencies and damping rates. We successfully identified the LOPC modes. The obtained frequencies and damping rates were shown to depend on the pump power, which implies photoexcited carrier density. We compared the pump-power dependence of the frequencies and damping rates of the LOPC modes with the carrier density dependence of the complex eigen-energies of the coupled modes by using the non-Hermitian phenomenological effective Hamiltonian. Good agreement was obtained between the observed and calculated dependences, demonstrating that DMD is an effective alternative to Fourier analysis which often fails to estimate effective damping rates.


2021 ◽  
Vol 19 (1) ◽  
pp. 015101
Author(s):  
H Ahmad ◽  
N H Abdul Kahar ◽  
N F Norisham ◽  
S A Reduan ◽  
L Bayang

Abstract For the first time, this research proposed a copper telluride (Cu2Te)-polyvinyl alcohol thin film as a saturable absorber (SA) in an erbium-doped fiber laser (EDFL) operating in the long-wavelength band (L-band). The nonlinear optical absorption measurement of Cu2Te thin film revealed a saturation intensity of 3.26 kW cm−2 and a modulation depth of 2.7%. Furthermore, the mode-locked pulse was successfully generated by integrating a Cu2Te thin film into the L-band cavity at a threshold pump power of 135.61 mW with a center wavelength and pulse duration of 1565.48 nm and 770 fs, respectively. When observing the output mode-locked pulse, the pump power for the EDFL ranged from 135.61 mW to 201.28 mW, with the fundamental mode having a repetition rate 10.28 MHz. Furthermore, the magnitude of the signal-to-noise ratio was approximately 61.3 dB, indicating that the laser was stable with no significant fluctuations during the stability test. Overall, the findings showed that Cu2Te thin film has an excellent output and a promising candidate for an SA, implying that it could have a lot of potentials in pulsed laser application.


2021 ◽  
Vol 11 (22) ◽  
pp. 11068
Author(s):  
Chi-Chun Lee ◽  
Chien-Yen Huang ◽  
Hao-Yun Huang ◽  
Chao-Ming Chen ◽  
Chia-Han Tsou

The comparison of output powers between self-Raman Nd:YVO4 lasers and Nd:YVO4/KGW Raman lasers operating at lime and orange wavelengths is presented. We exploit the LBO crystal with cutting angle θ = 90° and φ = 8° for the lime wavelengths, and then we change the angle to θ = 90° and φ = 3.9° for the orange wavelengths. In self-Raman Nd:YVO4 lasers, experimental results reveal that thermal loading can impact on the output performances, especially at the high pump power. However, by using a KGW crystal as Raman medium can remarkably share the thermal loading from gain medium. Besides, the designed coating for high reflectively at the Stokes field on the surface of KGW also improved the beam quality and reduced the lasing threshold. For self-Raman Nd:YVO4 lasers, we have achieved the output powers of 6.54 W and 5.12 W at 559 nm and 588 nm, respectively. For Nd:YVO4/KGW Raman lasers, the output powers at 559 nm and 589 nm have been increased to 9.1 W and 7.54 W, respectively. All lasers operate at a quasi-CW regime with the repetition rate 50 Hz and the duty cycle 50%.


Laser Physics ◽  
2021 ◽  
Vol 31 (12) ◽  
pp. 126206
Author(s):  
A Rajesh ◽  
S Chandru ◽  
S Robinson

Abstract Defective hybrid cladding through a silicon nanocrystal-core-structured photonic crystal fiber intended for high pump power supercontinuum proliferation is discussed in this paper. The cladding comprehends a hybrid approach of a hexagonal air hole in the outer section and a petal-structured air hole in the inner layer with a twisted pattern. Such a procedure with an air hole in the cladding section with a silicon nanocore displays high nonlinearity and negative dispersion at the communication window for varying pulse widths with 20 kW pump power. The impact of structural parameters of the proposed structure on the optical constraints is discussed, namely, dispersion, nonlinearity and group-velocity dispersion for wavelengths ranging from 0.45 µm to 1.85 µm. The proposed structure with optimized structural parameters provides high nonlinearity of about 6.38 × 106 W−1 km−1 with negative dispersion of −70.19 ps (nm km)−1 at 1550 nm.


Sign in / Sign up

Export Citation Format

Share Document