Modeling diffraction off Digital Micromirror Devices

2021 ◽  
Author(s):  
Danyal Ahsanullah ◽  
Muralidhar M. Balaji ◽  
Bruce Gnade ◽  
Bruce Snider ◽  
Prasanna Rangarajan
Author(s):  
Jingdan Liu ◽  
Charlotte Zaouter ◽  
Xianglei Liu ◽  
Shunmoogum Patten ◽  
Jinyang Liang

2020 ◽  
Vol 13 (06) ◽  
pp. 2030011
Author(s):  
Ziyun Zhuang ◽  
Ho Pui Ho

There is an ongoing technological revolution in the field of biomedical instruments. Consequently, high performance healthcare devices have led to remarkable economic developments in the medical hardware industry. Until now, nearly all optical bio-imaging systems are based on the 2-dimensional imaging chip architecture. In fact, recent developments in digital micromirror devices (DMDs) are gradually making their way from conventional optical projection displays into biomedical instruments. As an ultrahigh-speed spatial light modulator, the DMD may offer a range of new applications including real-time biomedical sensing or imaging, as well as orientation tracking and targeted screening. Given its short history, the use of DMD in biomedical and healthcare instruments has emerged only within the past decade. In this paper, we first provide an overview by summarizing all reported cases found in the literature. We then critically analyze the general pros and cons of using DMD, specifically in terms of response speed, stability, accuracy, repeatability, robustness, and degree of automation, in relation to the performance outcome of the designated instrument. Particularly, we shall focus our discussion on the use of Micro-Electro-Mechanical System (MEMS)-based devices in a set of representative instruments including the surface plasmon resonance biosensor, optical microscopes, Raman spectrometers, ophthalmoscopes, and the micro stereolithographic system. Finally, the prospects of using the DMD approach in biomedical or healthcare systems and possible next generation DMD-based biomedical devices are presented.


2020 ◽  
Author(s):  
Mario Lachetta ◽  
Hauke Sandmeyer ◽  
Alice Sandmeyer ◽  
Jan Schulte am Esch ◽  
Thomas Huser ◽  
...  

SummaryDigital micromirror devices (DMDs) are spatial light modulators that employ the electro-mechanical movement of miniaturized mirrors to steer and thus modulate the light reflected of a mirror array. Their wide availability, low cost and high speed make them a popular choice both in consumer electronics such as video projectors, and scientific applications such as microscopy.High-end fluorescence microscopy systems typically employ laser light sources, which by their nature provide coherent excitation light. In super-resolution microscopy applications that use light modulation, most notably structured illumination microscopy (SIM), the coherent nature of the excitation light becomes a requirement to achieve optimal interference pattern contrast. The universal combination of DMDs and coherent light sources, especially when working with multiple different wavelengths, is unfortunately not straight forward. The substructure of the tilted micromirror array gives rise to a blazed grating, which has to be understood and which must be taken into account when designing a DMD-based illumination system.Here, we present a set of simulation frameworks that explore the use of DMDs in conjunction with coherent light sources, motivated by their application in SIM, but which are generalizable to other light patterning applications. This framework provides all the tools to explore and compute DMD-based diffraction effects and to simulate possible system alignment configurations computationally, which simplifies the system design process and provides guidance for setting up DMD-based microscopes.


Author(s):  
Anton Travinsky ◽  
Dmitry Vorobiev ◽  
Zoran Ninkov ◽  
Alan Raisanen ◽  
Manuel A. Quijada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document