scholarly journals Application of digital micromirror devices (DMD) in biomedical instruments

2020 ◽  
Vol 13 (06) ◽  
pp. 2030011
Author(s):  
Ziyun Zhuang ◽  
Ho Pui Ho

There is an ongoing technological revolution in the field of biomedical instruments. Consequently, high performance healthcare devices have led to remarkable economic developments in the medical hardware industry. Until now, nearly all optical bio-imaging systems are based on the 2-dimensional imaging chip architecture. In fact, recent developments in digital micromirror devices (DMDs) are gradually making their way from conventional optical projection displays into biomedical instruments. As an ultrahigh-speed spatial light modulator, the DMD may offer a range of new applications including real-time biomedical sensing or imaging, as well as orientation tracking and targeted screening. Given its short history, the use of DMD in biomedical and healthcare instruments has emerged only within the past decade. In this paper, we first provide an overview by summarizing all reported cases found in the literature. We then critically analyze the general pros and cons of using DMD, specifically in terms of response speed, stability, accuracy, repeatability, robustness, and degree of automation, in relation to the performance outcome of the designated instrument. Particularly, we shall focus our discussion on the use of Micro-Electro-Mechanical System (MEMS)-based devices in a set of representative instruments including the surface plasmon resonance biosensor, optical microscopes, Raman spectrometers, ophthalmoscopes, and the micro stereolithographic system. Finally, the prospects of using the DMD approach in biomedical or healthcare systems and possible next generation DMD-based biomedical devices are presented.

Author(s):  
R.J. DuMola ◽  
G.R. Heath

Abstract The plasma transferred arc process continues to be the coating method of choice for the application of cobalt base alloys onto valve and valve trim. Although new applications have been developed over the years, the process remains largely associated with the application of high performance, highly alloyed powders for relatively small parts or small areas of large parts. The use of the plasma transferred arc process for large volume application has been limited by the robustness and performance characteristics of the equipment and the use of cobalt. A new plasma transferred arc system (power source, torch and process controller) has been developed which allows the application of powder metal alloys at deposition rates of up to 40 pounds per hour. In addition, there has been a development of new non-cobalt powder alloys with excellent mixed corrosion and wear resistance properties. These capabilities have rendered the process technically and economically viable for large and demanding applications in the mining, power utility and steel industries. The new PTA system and the recent developments in powder alloys will be discussed. Reference will be made to specific applications in target industries.


Author(s):  
S. Yegnasubramanian ◽  
V.C. Kannan ◽  
R. Dutto ◽  
P.J. Sakach

Recent developments in the fabrication of high performance GaAs devices impose crucial requirements of low resistance ohmic contacts with excellent contact properties such as, thermal stability, contact resistivity, contact depth, Schottky barrier height etc. The nature of the interface plays an important role in the stability of the contacts due to problems associated with interdiffusion and compound formation at the interface during device fabrication. Contacts of pure metal thin films on GaAs are not desirable due to the presence of the native oxide and surface defects at the interface. Nickel has been used as a contact metal on GaAs and has been found to be reactive at low temperatures. Formation Of Ni2 GaAs at 200 - 350C is reported and is found to grow epitaxially on (001) and on (111) GaAs, but is shown to be unstable at 450C. This paper reports the investigations carried out to understand the microstructure, nature of the interface and composition of sputter deposited and annealed (at different temperatures) Ni-Sb ohmic contacts on GaAs by TEM. Attempts were made to correlate the electrical properties of the films such as the sheet resistance and contact resistance, with the microstructure. The observations are corroborated by Scanning Auger Microprobe (SAM) investigations.


2020 ◽  
Author(s):  
James McDonagh ◽  
William Swope ◽  
Richard L. Anderson ◽  
Michael Johnston ◽  
David J. Bray

Digitization offers significant opportunities for the formulated product industry to transform the way it works and develop new methods of business. R&D is one area of operation that is challenging to take advantage of these technologies due to its high level of domain specialisation and creativity but the benefits could be significant. Recent developments of base level technologies such as artificial intelligence (AI)/machine learning (ML), robotics and high performance computing (HPC), to name a few, present disruptive and transformative technologies which could offer new insights, discovery methods and enhanced chemical control when combined in a digital ecosystem of connectivity, distributive services and decentralisation. At the fundamental level, research in these technologies has shown that new physical and chemical insights can be gained, which in turn can augment experimental R&D approaches through physics-based chemical simulation, data driven models and hybrid approaches. In all of these cases, high quality data is required to build and validate models in addition to the skills and expertise to exploit such methods. In this article we give an overview of some of the digital technology demonstrators we have developed for formulated product R&D. We discuss the challenges in building and deploying these demonstrators.<br>


Author(s):  
Hiroyuki Hakoi ◽  
Ming Ni ◽  
Junichi Hashimoto ◽  
Takashi Sato ◽  
Shinji Shimada ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ting Zhang ◽  
Shibin Li

AbstractIn this manuscript, the inorganic perovskite CsPbI2Br and CsPbIBr2 are investigated as photoactive materials that offer higher stability than the organometal trihalide perovskite materials. The fabrication methods allow anti-solvent processing the CsPbIxBr3−x films, overcoming the poor film quality that always occur in a single-step solution process. The introduced diethyl ether in spin-coating process is demonstrated to be successful, and the effects of the anti-solvent on film quality are studied. The devices fabricated using the methods achieve high-performance, self-powered and the stabilized photodetectors show fast response speed. The results illustrate a great potential of all-inorganic CsPbIxBr3−x perovskites in visible photodetection and provide an effective way to achieve high performance devices with self-powered capability.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 327
Author(s):  
Morwenna J. Spear ◽  
Simon F. Curling ◽  
Athanasios Dimitriou ◽  
Graham A. Ormondroyd

Wood modification is now widely recognized as offering enhanced properties of wood and overcoming issues such as dimensional instability and biodegradability which affect natural wood. Typical wood modification systems use chemical modification, impregnation modification or thermal modification, and these vary in the properties achieved. As control and understanding of the wood modification systems has progressed, further opportunities have arisen to add extra functionalities to the modified wood. These include UV stabilisation, fire retardancy, or enhanced suitability for paints and coatings. Thus, wood may become a multi-functional material through a series of modifications, treatments or reactions, to create a high-performance material with previously impossible properties. In this paper we review systems that combine the well-established wood modification procedures with secondary techniques or modifications to deliver emerging technologies with multi-functionality. The new applications targeted using this additional functionality are diverse and range from increased electrical conductivity, creation of sensors or responsive materials, improvement of wellbeing in the built environment, and enhanced fire and flame protection. We identified two parallel and connected themes: (1) the functionalisation of modified timber and (2) the modification of timber to provide (multi)-functionality. A wide range of nanotechnology concepts have been harnessed by this new generation of wood modifications and wood treatments. As this field is rapidly expanding, we also include within the review trends from current research in order to gauge the state of the art, and likely direction of travel of the industry.


2021 ◽  
Vol 9 (14) ◽  
pp. 4799-4807
Author(s):  
Yong Zhang ◽  
Weidong Song

P-CuZnS/n-GaN UV photodetector is prepared by a simple chemical bath deposition, showing excellent self-powered properties, including ultrahigh on/off ratio (3 × 108), fast response speed (0.14/40 ms) and large detectivity of 3 × 1013 Jones.


1973 ◽  
Vol 63 ◽  
pp. 9-33

Chapter I presents a general review of economic developments in 1972 including an attempt to assess the position of the economy in relation to its full employment potential. Chapter II includes the usual short-term forecast of likely developments over the next eighteen months together with a less detailed assessment of prospects over the rather longer term. Recent developments in and short-term prospects for various industries within the industrial production index are dealt with in some detail in Chapter III, while the final chapter contains our annual review and forecasts for the World Economy.


Sign in / Sign up

Export Citation Format

Share Document